Abstract:This work continues to investigate the link between differentially private (DP) and online learning. Alon, Livni, Malliaris, and Moran (2019) showed that for binary concept classes, DP learnability of a given class implies that it has a finite Littlestone dimension (equivalently, that it is online learnable). Their proof relies on a model-theoretic result by Hodges (1997), which demonstrates that any binary concept class with a large Littlestone dimension contains a large subclass of thresholds. In a follow-up work, Jung, Kim, and Tewari (2020) extended this proof to multiclass PAC learning with a bounded number of labels. Unfortunately, Hodges's result does not apply in other natural settings such as multiclass PAC learning with an unbounded label space, and PAC learning of partial concept classes. This naturally raises the question of whether DP learnability continues to imply online learnability in more general scenarios: indeed, Alon, Hanneke, Holzman, and Moran (2021) explicitly leave it as an open question in the context of partial concept classes, and the same question is open in the general multiclass setting. In this work, we give a positive answer to these questions showing that for general classification tasks, DP learnability implies online learnability. Our proof reasons directly about Littlestone trees, without relying on thresholds. We achieve this by establishing several Ramsey-type theorems for trees, which might be of independent interest.
Abstract:Hedonic Games (HGs) are a classical framework modeling coalition formation of strategic agents guided by their individual preferences. According to these preferences, it is desirable that a coalition structure (i.e. a partition of agents into coalitions) satisfies some form of stability. The most well-known and natural of such notions is arguably core-stability. Informally, a partition is core-stable if no subset of agents would like to deviate by regrouping in a so-called core-blocking coalition. Unfortunately, core-stable partitions seldom exist and even when they do, it is often computationally intractable to find one. To circumvent these problems, we propose the notion of $\varepsilon$-fractional core-stability, where at most an $\varepsilon$-fraction of all possible coalitions is allowed to core-block. It turns out that such a relaxation may guarantee both existence and polynomial-time computation. Specifically, we design efficient algorithms returning an $\varepsilon$-fractional core-stable partition, with $\varepsilon$ exponentially decreasing in the number of agents, for two fundamental classes of HGs: Simple Fractional and Anonymous. From a probabilistic point of view, being the definition of $\varepsilon$-fractional core equivalent to requiring that uniformly sampled coalitions core-block with probability lower than $\varepsilon$, we further extend the definition to handle more complex sampling distributions. Along this line, when valuations have to be learned from samples in a PAC-learning fashion, we give positive and negative results on which distributions allow the efficient computation of outcomes that are $\varepsilon$-fractional core-stable with arbitrarily high confidence.
Abstract:We study PAC learnability and PAC stabilizability of Hedonic Games (HGs), i.e., efficiently inferring preferences or core-stable partitions from samples. We first expand the known learnability/stabilizability landscape for some of the most prominent HGs classes, providing results for Friends and Enemies Games, Bottom Responsive, and Anonymous HGs. Then, having a broader view in mind, we attempt to shed light on the structural properties leading to learnability/stabilizability, or lack thereof, for specific HGs classes. Along this path, we focus on the fully expressive Hedonic Coalition Nets representation of HGs. We identify two sets of conditions that lead to efficient learnability, and which encompass all of the known positive learnability results. On the side of stability, we reveal that, while the freedom of choosing an ad hoc adversarial distribution is the most obvious hurdle to achieving PAC stability, it is not the only one. First, we show a distribution independent necessary condition for PAC stability. Then, we focus on $\W$-games, where players have individual preferences over other players and evaluate coalitions based on the least preferred member. We prove that these games are PAC stabilizable under the class of bounded distributions, which assign positive probability mass to all coalitions. Finally, we discuss why such a result is not easily extendable to other HGs classes even in this promising scenario. Namely, we establish a purely computational property necessary for achieving PAC stability.