Abstract:Applying Differentially Private Stochastic Gradient Descent (DPSGD) to training modern, large-scale neural networks such as transformer-based models is a challenging task, as the magnitude of noise added to the gradients at each iteration scales with model dimension, hindering the learning capability significantly. We propose a unified framework, $\textsf{LSG}$, that fully exploits the low-rank and sparse structure of neural networks to reduce the dimension of gradient updates, and hence alleviate the negative impacts of DPSGD. The gradient updates are first approximated with a pair of low-rank matrices. Then, a novel strategy is utilized to sparsify the gradients, resulting in low-dimensional, less noisy updates that are yet capable of retaining the performance of neural networks. Empirical evaluation on natural language processing and computer vision tasks shows that our method outperforms other state-of-the-art baselines.
Abstract:We study Gaussian mechanism in the shuffle model of differential privacy (DP). Particularly, we characterize the mechanism's R\'enyi differential privacy (RDP), showing that it is of the form: $$ \epsilon(\lambda) \leq \frac{1}{\lambda-1}\log\left(\frac{e^{-\lambda/2\sigma^2}}{n^\lambda}\sum_{\substack{k_1+\dotsc+k_n=\lambda;\\k_1,\dotsc,k_n\geq 0}}\binom{\lambda}{k_1,\dotsc,k_n}e^{\sum_{i=1}^nk_i^2/2\sigma^2}\right) $$ We further prove that the RDP is strictly upper-bounded by the Gaussian RDP without shuffling. The shuffle Gaussian RDP is advantageous in composing multiple DP mechanisms, where we demonstrate its improvement over the state-of-the-art approximate DP composition theorems in privacy guarantees of the shuffle model. Moreover, we extend our study to the subsampled shuffle mechanism and the recently proposed shuffled check-in mechanism, which are protocols geared towards distributed/federated learning. Finally, an empirical study of these mechanisms is given to demonstrate the efficacy of employing shuffle Gaussian mechanism under the distributed learning framework to guarantee rigorous user privacy.
Abstract:Recent studies of distributed computation with formal privacy guarantees, such as differentially private (DP) federated learning, leverage random sampling of clients in each round (privacy amplification by subsampling) to achieve satisfactory levels of privacy. Achieving this however requires strong assumptions which may not hold in practice, including precise and uniform subsampling of clients, and a highly trusted aggregator to process clients' data. In this paper, we explore a more practical protocol, shuffled check-in, to resolve the aforementioned issues. The protocol relies on client making independent and random decision to participate in the computation, freeing the requirement of server-initiated subsampling, and enabling robust modelling of client dropouts. Moreover, a weaker trust model known as the shuffle model is employed instead of using a trusted aggregator. To this end, we introduce new tools to characterize the R\'enyi differential privacy (RDP) of shuffled check-in. We show that our new techniques improve at least three times in privacy guarantee over those using approximate DP's strong composition at various parameter regimes. Furthermore, we provide a numerical approach to track the privacy of generic shuffled check-in mechanism including distributed stochastic gradient descent (SGD) with Gaussian mechanism. To the best of our knowledge, this is also the first evaluation of Gaussian mechanism within the local/shuffle model under the distributed setting in the literature, which can be of independent interest.
Abstract:Recently, it is shown that shuffling can amplify the central differential privacy guarantees of data randomized with local differential privacy. Within this setup, a centralized, trusted shuffler is responsible for shuffling by keeping the identities of data anonymous, which subsequently leads to stronger privacy guarantees for systems. However, introducing a centralized entity to the originally local privacy model loses some appeals of not having any centralized entity as in local differential privacy. Moreover, implementing a shuffler in a reliable way is not trivial due to known security issues and/or requirements of advanced hardware or secure computation technology. Motivated by these practical considerations, we rethink the shuffle model to relax the assumption of requiring a centralized, trusted shuffler. We introduce network shuffling, a decentralized mechanism where users exchange data in a random-walk fashion on a network/graph, as an alternative of achieving privacy amplification via anonymity. We analyze the threat model under such a setting, and propose distributed protocols of network shuffling that is straightforward to implement in practice. Furthermore, we show that the privacy amplification rate is similar to other privacy amplification techniques such as uniform shuffling. To our best knowledge, among the recently studied intermediate trust models that leverage privacy amplification techniques, our work is the first that is not relying on any centralized entity to achieve privacy amplification.
Abstract:We assess the vulnerabilities of deep face recognition systems for images that falsify/spoof multiple identities simultaneously. We demonstrate that, by manipulating the deep feature representation extracted from a face image via imperceptibly small perturbations added at the pixel level using our proposed Universal Adversarial Spoofing Examples (UAXs), one can fool a face verification system into recognizing that the face image belongs to multiple different identities with a high success rate. One characteristic of the UAXs crafted with our method is that they are universal (identity-agnostic); they are successful even against identities not known in advance. For a certain deep neural network, we show that we are able to spoof almost all tested identities (99\%), including those not known beforehand (not included in training). Our results indicate that a multiple-identity attack is a real threat and should be taken into account when deploying face recognition systems.
Abstract:We propose a new framework of synthesizing data using deep generative models in a differentially private manner. Within our framework, sensitive data are sanitized with rigorous privacy guarantees in a one-shot fashion, such that training deep generative models is possible without re-using the original data. Hence, no extra privacy costs or model constraints are incurred, in contrast to popular approaches such as Differentially Private Stochastic Gradient Descent (DP-SGD), which, among other issues, causes degradation in privacy guarantees as the training iteration increases. We demonstrate a realization of our framework by making use of the characteristic function and an adversarial re-weighting objective, which are of independent interest as well. Our proposal has theoretical guarantees of performance, and empirical evaluations on multiple datasets show that our approach outperforms other methods at reasonable levels of privacy.
Abstract:Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named "AMVA4NewPhysics" studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy physics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. In this paper, the most relevant new tools, among those studied and developed, are presented along with the evaluation of their performances.
Abstract:Transfer learning is a useful machine learning framework that allows one to build task-specific models (student models) without significantly incurring training costs using a single powerful model (teacher model) pre-trained with a large amount of data. The teacher model may contain private data, or interact with private inputs. We investigate if one can leak or infer such private information without interacting with the teacher model directly. We describe such inference attacks in the context of face recognition, an application of transfer learning that is highly sensitive to personal privacy. Under black-box and realistic settings, we show that existing inference techniques are ineffective, as interacting with individual training instances through the student models does not reveal information about the teacher. We then propose novel strategies to infer from aggregate-level information. Consequently, membership inference attacks on the teacher model are shown to be possible, even when the adversary has access only to the student models. We further demonstrate that sensitive attributes can be inferred, even in the case where the adversary has limited auxiliary information. Finally, defensive strategies are discussed and evaluated. Our extensive study indicates that information leakage is a real privacy threat to the transfer learning framework widely used in real-life situations.