Abstract:Deep Learning has shown outstanding results in computer vision tasks; healthcare is no exception. However, there is no straightforward way to expose the decision-making process of DL models. Good accuracy is not enough for skin cancer predictions. Understanding the model's behavior is crucial for clinical application and reliable outcomes. In this work, we identify desiderata for explanations in skin-lesion models. We analyzed seven methods, four based on pixel-attribution (Grad-CAM, Score-CAM, LIME, SHAP) and three on high-level concepts (ACE, ICE, CME), for a deep neural network trained on the International Skin Imaging Collaboration Archive. Our findings indicate that while these techniques reveal biases, there is room for improving the comprehensiveness of explanations to achieve transparency in skin-lesion models.
Abstract:Despite significant advancements and pervasive use of vision-language models, a paucity of studies has addressed their ethical implications. These models typically require extensive training data, often from hastily reviewed text and image datasets, leading to highly imbalanced datasets and ethical concerns. Additionally, models initially trained in English are frequently fine-tuned for other languages, such as the CLIP model, which can be expanded with more data to enhance capabilities but can add new biases. The CAPIVARA, a CLIP-based model adapted to Portuguese, has shown strong performance in zero-shot tasks. In this paper, we evaluate four different types of discriminatory practices within visual-language models and introduce FairPIVARA, a method to reduce them by removing the most affected dimensions of feature embeddings. The application of FairPIVARA has led to a significant reduction of up to 98% in observed biases while promoting a more balanced word distribution within the model. Our model and code are available at: https://github.com/hiaac-nlp/FairPIVARA.
Abstract:Data derived from the realm of the social sciences is often produced in digital text form, which motivates its use as a source for natural language processing methods. Researchers and practitioners have developed and relied on artificial intelligence techniques to collect, process, and analyze documents in the legal field, especially for tasks such as text summarization and classification. While increasing procedural efficiency is often the primary motivation behind natural language processing in the field, several works have proposed solutions for human rights-related issues, such as assessment of public policy and institutional social settings. One such issue is the presence of gender biases in court decisions, which has been largely studied in social sciences fields; biased institutional responses to gender-based violence are a violation of international human rights dispositions since they prevent gender minorities from accessing rights and hamper their dignity. Natural language processing-based approaches can help detect these biases on a larger scale. Still, the development and use of such tools require researchers and practitioners to be mindful of legal and ethical aspects concerning data sharing and use, reproducibility, domain expertise, and value-charged choices. In this work, we (a) present an experimental framework developed to automatically detect gender biases in court decisions issued in Brazilian Portuguese and (b) describe and elaborate on features we identify to be critical in such a technology, given its proposed use as a support tool for research and assessment of court~activity.
Abstract:In the evolving landscape of deep learning, selecting the best pre-trained models from a growing number of choices is a challenge. Transferability scorers propose alleviating this scenario, but their recent proliferation, ironically, poses the challenge of their own assessment. In this work, we propose both robust benchmark guidelines for transferability scorers, and a well-founded technique to combine multiple scorers, which we show consistently improves their results. We extensively evaluate 13 scorers from literature across 11 datasets, comprising generalist, fine-grained, and medical imaging datasets. We show that few scorers match the predictive performance of the simple raw metric of models on ImageNet, and that all predictors suffer on medical datasets. Our results highlight the potential of combining different information sources for reliably predicting transferability across varied domains.
Abstract:Crime in the 21st century is split into a virtual and real world. However, the former has become a global menace to people's well-being and security in the latter. The challenges it presents must be faced with unified global cooperation, and we must rely more than ever on automated yet trustworthy tools to combat the ever-growing nature of online offenses. Over 10 million child sexual abuse reports are submitted to the US National Center for Missing & Exploited Children every year, and over 80% originated from online sources. Therefore, investigation centers and clearinghouses cannot manually process and correctly investigate all imagery. In light of that, reliable automated tools that can securely and efficiently deal with this data are paramount. In this sense, the scene recognition task looks for contextual cues in the environment, being able to group and classify child sexual abuse data without requiring to be trained on sensitive material. The scarcity and limitations of working with child sexual abuse images lead to self-supervised learning, a machine-learning methodology that leverages unlabeled data to produce powerful representations that can be more easily transferred to target tasks. This work shows that self-supervised deep learning models pre-trained on scene-centric data can reach 71.6% balanced accuracy on our indoor scene classification task and, on average, 2.2 percentage points better performance than a fully supervised version. We cooperate with Brazilian Federal Police experts to evaluate our indoor classification model on actual child abuse material. The results demonstrate a notable discrepancy between the features observed in widely used scene datasets and those depicted on sensitive materials.
Abstract:This work introduces CAPIVARA, a cost-efficient framework designed to enhance the performance of multilingual CLIP models in low-resource languages. While CLIP has excelled in zero-shot vision-language tasks, the resource-intensive nature of model training remains challenging. Many datasets lack linguistic diversity, featuring solely English descriptions for images. CAPIVARA addresses this by augmenting text data using image captioning and machine translation to generate multiple synthetic captions in low-resource languages. We optimize the training pipeline with LiT, LoRA, and gradient checkpointing to alleviate the computational cost. Through extensive experiments, CAPIVARA emerges as state of the art in zero-shot tasks involving images and Portuguese texts. We show the potential for significant improvements in other low-resource languages, achieved by fine-tuning the pre-trained multilingual CLIP using CAPIVARA on a single GPU for 2 hours. Our model and code is available at https://github.com/hiaac-nlp/CAPIVARA.
Abstract:Melanoma is the most severe type of skin cancer due to its ability to cause metastasis. It is more common in black people, often affecting acral regions: palms, soles, and nails. Deep neural networks have shown tremendous potential for improving clinical care and skin cancer diagnosis. Nevertheless, prevailing studies predominantly rely on datasets of white skin tones, neglecting to report diagnostic outcomes for diverse patient skin tones. In this work, we evaluate supervised and self-supervised models in skin lesion images extracted from acral regions commonly observed in black individuals. Also, we carefully curate a dataset containing skin lesions in acral regions and assess the datasets concerning the Fitzpatrick scale to verify performance on black skin. Our results expose the poor generalizability of these models, revealing their favorable performance for lesions on white skin. Neglecting to create diverse datasets, which necessitates the development of specialized models, is unacceptable. Deep neural networks have great potential to improve diagnosis, particularly for populations with limited access to dermatology. However, including black skin lesions is necessary to ensure these populations can access the benefits of inclusive technology.
Abstract:Transfer learning boosts the performance of medical image analysis by enabling deep learning (DL) on small datasets through the knowledge acquired from large ones. As the number of DL architectures explodes, exhaustively attempting all candidates becomes unfeasible, motivating cheaper alternatives for choosing them. Transferability scoring methods emerge as an enticing solution, allowing to efficiently calculate a score that correlates with the architecture accuracy on any target dataset. However, since transferability scores have not been evaluated on medical datasets, their use in this context remains uncertain, preventing them from benefiting practitioners. We fill that gap in this work, thoroughly evaluating seven transferability scores in three medical applications, including out-of-distribution scenarios. Despite promising results in general-purpose datasets, our results show that no transferability score can reliably and consistently estimate target performance in medical contexts, inviting further work in that direction.
Abstract:Skin lesion analysis models are biased by artifacts placed during image acquisition, which influence model predictions despite carrying no clinical information. Solutions that address this problem by regularizing models to prevent learning those spurious features achieve only partial success, and existing test-time debiasing techniques are inappropriate for skin lesion analysis due to either making unrealistic assumptions on the distribution of test data or requiring laborious annotation from medical practitioners. We propose TTS (Test-Time Selection), a human-in-the-loop method that leverages positive (e.g., lesion area) and negative (e.g., artifacts) keypoints in test samples. TTS effectively steers models away from exploiting spurious artifact-related correlations without retraining, and with less annotation requirements. Our solution is robust to a varying availability of annotations, and different levels of bias. We showcase on the ISIC2019 dataset (for which we release a subset of annotated images) how our model could be deployed in the real-world for mitigating bias.
Abstract:Distribution shifts are common in real-world datasets and can affect the performance and reliability of deep learning models. In this paper, we study two types of distribution shifts: diversity shifts, which occur when test samples exhibit patterns unseen during training, and correlation shifts, which occur when test data present a different correlation between seen invariant and spurious features. We propose an integrated protocol to analyze both types of shifts using datasets where they co-exist in a controllable manner. Finally, we apply our approach to a real-world classification problem of skin cancer analysis, using out-of-distribution datasets and specialized bias annotations. Our protocol reveals three findings: 1) Models learn and propagate correlation shifts even with low-bias training; this poses a risk of accumulating and combining unaccountable weak biases; 2) Models learn robust features in high- and low-bias scenarios but use spurious ones if test samples have them; this suggests that spurious correlations do not impair the learning of robust features; 3) Diversity shift can reduce the reliance on spurious correlations; this is counter intuitive since we expect biased models to depend more on biases when invariant features are missing. Our work has implications for distribution shift research and practice, providing new insights into how models learn and rely on spurious correlations under different types of shifts.