Abstract:This paper presents opt-in camera, a concept of privacy-preserving camera systems capable of recording only specific individuals in a crowd who explicitly consent to be recorded. Our system utilizes a mobile wireless communication tag attached to personal belongings as proof of opt-in and as a means of localizing tag carriers in video footage. Specifically, the on-ground positions of the wireless tag are first tracked over time using the unscented Kalman filter (UKF). The tag trajectory is then matched against visual tracking results for pedestrians found in videos to identify the tag carrier. Technically, we devise a dedicated trajectory matching technique based on constrained linear optimization, as well as a novel calibration technique that handles wireless tag-camera calibration and hyperparameter tuning for the UKF, which mitigates the non-line-of-sight (NLoS) issue in wireless localization. We realize the proposed opt-in camera system using ultra-wideband (UWB) devices and an off-the-shelf webcam installed in the environment. Experimental results demonstrate that our system can perform opt-in recording of individuals in near real-time at 10 fps, with reliable identification accuracy for a crowd of 8-23 people in a confined space.
Abstract:This paper presents the Customer Experience (CX) Simulator, a novel framework designed to assess the effects of untested web-marketing campaigns through user behavior simulations. The proposed framework leverages large language models (LLMs) to represent various events in a user's behavioral history, such as viewing an item, applying a coupon, or purchasing an item, as semantic embedding vectors. We train a model to predict transitions between events from their LLM embeddings, which can even generalize to unseen events by learning from diverse training data. In web-marketing applications, we leverage this transition prediction model to simulate how users might react differently when new campaigns or products are presented to them. This allows us to eliminate the need for costly online testing and enhance the marketers' abilities to reveal insights. Our numerical evaluation and user study, utilizing BigQuery Public Datasets from the Google Merchandise Store, demonstrate the effectiveness of our framework.
Abstract:This paper presents TSPDiffuser, a novel data-driven path planner for traveling salesperson path planning problems (TSPPPs) in environments rich with obstacles. Given a set of destinations within obstacle maps, our objective is to efficiently find the shortest possible collision-free path that visits all the destinations. In TSPDiffuser, we train a diffusion model on a large collection of TSPPP instances and their respective solutions to generate plausible paths for unseen problem instances. The model can then be employed as a learned sampler to construct a roadmap that contains potential solutions with a small number of nodes and edges. This approach enables efficient and accurate estimation of traveling costs between destinations, effectively addressing the primary computational challenge in solving TSPPPs. Experimental evaluations with diverse synthetic and real-world indoor/outdoor environments demonstrate the effectiveness of TSPDiffuser over existing methods in terms of the trade-off between solution quality and computational time requirements.
Abstract:We present RetailOpt, a novel opt-in, easy-to-deploy system for tracking customer movements in indoor retail environments. The system utilizes information presently accessible to customers through smartphones and retail apps: motion data, store map, and purchase records. The approach eliminates the need for additional hardware installations/maintenance and ensures customers maintain full control of their data. Specifically, RetailOpt first employs inertial navigation to recover relative trajectories from smartphone motion data. The store map and purchase records are then cross-referenced to identify a list of visited shelves, providing anchors to localize the relative trajectories in a store through continuous and discrete optimization. We demonstrate the effectiveness of our system through systematic experiments in five diverse environments. The proposed system, if successful, would produce accurate customer movement data, essential for a broad range of retail applications, including customer behavior analysis and in-store navigation. The potential application could also extend to other domains such as entertainment and assistive technologies.
Abstract:Multi-robot navigation is the task of finding trajectories for a team of robotic agents to reach their destinations as quickly as possible without collisions. In this work, we introduce a new problem: fair-delay multi-robot navigation, which aims not only to enable such efficient, safe travels but also to equalize the travel delays among agents in terms of actual trajectories as compared to the best possible trajectories. The learning of a navigation policy to achieve this objective requires resolving a nontrivial credit assignment problem with robotic agents having continuous action spaces. Hence, we developed a new algorithm called Navigation with Counterfactual Fairness Filter (NCF2). With NCF2, each agent performs counterfactual inference on whether it can advance toward its goal or should stay still to let other agents go. Doing so allows us to effectively address the aforementioned credit assignment problem and improve fairness regarding travel delays while maintaining high efficiency and safety. Our extensive experimental results in several challenging multi-robot navigation environments demonstrate the greater effectiveness of NCF2 as compared to state-of-the-art fairness-aware multi-agent reinforcement learning methods. Our demo videos and code are available on the project webpage: https://omron-sinicx.github.io/ncf2/
Abstract:The hierarchy of global and local planners is one of the most commonly utilized system designs in robot autonomous navigation. While the global planner generates a reference path from the current to goal locations based on the pre-built static map, the local planner produces a collision-free, kinodynamic trajectory to follow the reference path while avoiding perceived obstacles. The reference path should be replanned regularly to accommodate new obstacles that were absent in the pre-built map, but when to execute replanning remains an open question. In this work, we conduct an extensive simulation experiment to compare various replanning strategies and confirm that effective strategies highly depend on the environment as well as on the global and local planners. We then propose a new adaptive replanning strategy based on deep reinforcement learning, where an agent learns from experiences to decide appropriate replanning timings in the given environment and planning setups. Our experimental results demonstrate that the proposed replanning agent can achieve performance on par or even better than current best-performing strategies across multiple situations in terms of navigation robustness and efficiency.
Abstract:This study presents a benchmark for evaluating action-constrained reinforcement learning (RL) algorithms. In action-constrained RL, each action taken by the learning system must comply with certain constraints. These constraints are crucial for ensuring the feasibility and safety of actions in real-world systems. We evaluate existing algorithms and their novel variants across multiple robotics control environments, encompassing multiple action constraint types. Our evaluation provides the first in-depth perspective of the field, revealing surprising insights, including the effectiveness of a straightforward baseline approach. The benchmark problems and associated code utilized in our experiments are made available online at github.com/omron-sinicx/action-constrained-RL-benchmark for further research and development.
Abstract:Machine learning (ML) plays a crucial role in assessing traversability for autonomous rover operations on deformable terrains but suffers from inevitable prediction errors. Especially for heterogeneous terrains where the geological features vary from place to place, erroneous traversability prediction can become more apparent, increasing the risk of unrecoverable rover's wheel slip and immobilization. In this work, we propose a new path planning algorithm that explicitly accounts for such erroneous prediction. The key idea is the probabilistic fusion of distinctive ML models for terrain type classification and slip prediction into a single distribution. This gives us a multimodal slip distribution accounting for heterogeneous terrains and further allows statistical risk assessment to be applied to derive risk-aware traversing costs for path planning. Extensive simulation experiments have demonstrated that the proposed method is able to generate more feasible paths on heterogeneous terrains compared to existing methods.
Abstract:Multi-agent path planning (MAPP) in continuous spaces is a challenging problem with significant practical importance. One promising approach is to first construct graphs approximating the spaces, called roadmaps, and then apply multi-agent pathfinding (MAPF) algorithms to derive a set of conflict-free paths. While conventional studies have utilized roadmap construction methods developed for single-agent planning, it remains largely unexplored how we can construct roadmaps that work effectively for multiple agents. To this end, we propose a novel concept of roadmaps called cooperative timed roadmaps (CTRMs). CTRMs enable each agent to focus on its important locations around potential solution paths in a way that considers the behavior of other agents to avoid inter-agent collisions (i.e., "cooperative"), while being augmented in the time direction to make it easy to derive a "timed" solution path. To construct CTRMs, we developed a machine-learning approach that learns a generative model from a collection of relevant problem instances and plausible solutions and then uses the learned model to sample the vertices of CTRMs for new, previously unseen problem instances. Our empirical evaluation revealed that the use of CTRMs significantly reduced the planning effort with acceptable overheads while maintaining a success rate and solution quality comparable to conventional roadmap construction approaches.
Abstract:We present ShinRL, an open-source library specialized for the evaluation of reinforcement learning (RL) algorithms from both theoretical and practical perspectives. Existing RL libraries typically allow users to evaluate practical performances of deep RL algorithms through returns. Nevertheless, these libraries are not necessarily useful for analyzing if the algorithms perform as theoretically expected, such as if Q learning really achieves the optimal Q function. In contrast, ShinRL provides an RL environment interface that can compute metrics for delving into the behaviors of RL algorithms, such as the gap between learned and the optimal Q values and state visitation frequencies. In addition, we introduce a flexible solver interface for evaluating both theoretically justified algorithms (e.g., dynamic programming and tabular RL) and practically effective ones (i.e., deep RL, typically with some additional extensions and regularizations) in a consistent fashion. As a case study, we show that how combining these two features of ShinRL makes it easier to analyze the behavior of deep Q learning. Furthermore, we demonstrate that ShinRL can be used to empirically validate recent theoretical findings such as the effect of KL regularization for value iteration and for deep Q learning, and the robustness of entropy-regularized policies to adversarial rewards. The source code for ShinRL is available on GitHub: https://github.com/omron-sinicx/ShinRL.