Abstract:Deep learning has emerged as a promising approach for learning the nonlinear mapping between diffusion-weighted MR images and tissue parameters, which enables automatic and deep understanding of the brain microstructures. However, the efficiency and accuracy in the multi-parametric estimations are still limited since previous studies tend to estimate multi-parametric maps with dense sampling and isolated signal modeling. This paper proposes DeepMpMRI, a unified framework for fast and high-fidelity multi-parametric estimation from various diffusion models using sparsely sampled q-space data. DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details by exploiting the correlation across parameters. In addition, we introduce a Nesterov-based adaptive learning algorithm that optimizes the regularization parameter dynamically to enhance the performance. DeepMpMRI is an extendable framework capable of incorporating flexible network architecture. Experimental results demonstrate the superiority of our approach over 5 state-of-the-art methods in simultaneously estimating multi-parametric maps for various diffusion models with fine-grained details both quantitatively and qualitatively, achieving 4.5 - 22.5$\times$ acceleration compared to the dense sampling of a total of 270 diffusion gradients.
Abstract:Deep learning-based dMRI super-resolution methods can effectively enhance image resolution by leveraging the learning capabilities of neural networks on large datasets. However, these methods tend to learn a fixed scale mapping between low-resolution (LR) and high-resolution (HR) images, overlooking the need for radiologists to scale the images at arbitrary resolutions. Moreover, the pixel-wise loss in the image domain tends to generate over-smoothed results, losing fine textures and edge information. To address these issues, we propose a novel continuous super-resolution of dMRI with anatomical structure-assisted implicit neural representation learning method, called CSR-dMRI. Specifically, the CSR-dMRI model consists of two components. The first is the latent feature extractor, which primarily extracts latent space feature maps from LR dMRI and anatomical images while learning structural prior information from the anatomical images. The second is the implicit function network, which utilizes voxel coordinates and latent feature vectors to generate voxel intensities at corresponding positions. Additionally, a frequency-domain-based loss is introduced to preserve the structural and texture information, further enhancing the image quality. Extensive experiments on the publicly available HCP dataset validate the effectiveness of our approach. Furthermore, our method demonstrates superior generalization capability and can be applied to arbitrary-scale super-resolution, including non-integer scale factors, expanding its applicability beyond conventional approaches.
Abstract:Deep learning (DL) has emerged as a leading approach in accelerating MR imaging. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MR imaging involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MR imaging along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.
Abstract:Diffusion Magnetic Resonance Imaging (dMRI) plays a crucial role in the noninvasive investigation of tissue microstructural properties and structural connectivity in the \textit{in vivo} human brain. However, to effectively capture the intricate characteristics of water diffusion at various directions and scales, it is important to employ comprehensive q-space sampling. Unfortunately, this requirement leads to long scan times, limiting the clinical applicability of dMRI. To address this challenge, we propose SSOR, a Simultaneous q-Space sampling Optimization and Reconstruction framework. We jointly optimize a subset of q-space samples using a continuous representation of spherical harmonic functions and a reconstruction network. Additionally, we integrate the unique properties of diffusion magnetic resonance imaging (dMRI) in both the q-space and image domains by applying $l1$-norm and total-variation regularization. The experiments conducted on HCP data demonstrate that SSOR has promising strengths both quantitatively and qualitatively and exhibits robustness to noise.
Abstract:Deep learning has shown great potential in accelerating diffusion tensor imaging (DTI). Nevertheless, existing methods tend to suffer from Rician noise and detail loss in reconstructing the DTI-derived parametric maps especially when sparsely sampled q-space data are used. This paper proposes a novel method, AID-DTI (Accelerating hIgh fiDelity Diffusion Tensor Imaging), to facilitate fast and accurate DTI with only six measurements. AID-DTI is equipped with a newly designed Singular Value Decomposition (SVD)-based regularizer, which can effectively capture fine details while suppressing noise during network training. Experimental results on Human Connectome Project (HCP) data consistently demonstrate that the proposed method estimates DTI parameter maps with fine-grained details and outperforms three state-of-the-art methods both quantitatively and qualitatively.
Abstract:Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computational expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely, ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus enforce the model generalize to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with six state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
Abstract:Centralized training methods have shown promising results in MR image reconstruction, but privacy concerns arise when gathering data from multiple institutions. Federated learning, a distributed collaborative training scheme, can utilize multi-center data without the need to transfer data between institutions. However, existing federated learning MR image reconstruction methods rely on manually designed models which have extensive parameters and suffer from performance degradation when facing heterogeneous data distributions. To this end, this paper proposes a novel FederAted neUral archiTecture search approach fOr MR Image reconstruction (FedAutoMRI). The proposed method utilizes differentiable architecture search to automatically find the optimal network architecture. In addition, an exponential moving average method is introduced to improve the robustness of the client model to address the data heterogeneity issue. To the best of our knowledge, this is the first work to use federated neural architecture search for MR image reconstruction. Experimental results demonstrate that our proposed FedAutoMRI can achieve promising performances while utilizing a lightweight model with only a small number of model parameters compared to the classical federated learning methods.
Abstract:Federated learning (FL) based magnetic resonance (MR) image reconstruction can facilitate learning valuable priors from multi-site institutions without violating patient's privacy for accelerating MR imaging. However, existing methods rely on fully sampled data for collaborative training of the model. The client that only possesses undersampled data can neither participate in FL nor benefit from other clients. Furthermore, heterogeneous data distributions hinder FL from training an effective deep learning reconstruction model and thus cause performance degradation. To address these issues, we propose a Self-Supervised Federated Learning method (SSFedMRI). SSFedMRI explores the physics-based contrastive reconstruction networks in each client to realize cross-site collaborative training in the absence of fully sampled data. Furthermore, a personalized soft update scheme is designed to simultaneously capture the global shared representations among different centers and maintain the specific data distribution of each client. The proposed method is evaluated on four datasets and compared to the latest state-of-the-art approaches. Experimental results demonstrate that SSFedMRI possesses strong capability in reconstructing accurate MR images both visually and quantitatively on both in-distribution and out-of-distribution datasets.
Abstract:Deep learning-based methods have achieved encouraging performances in the field of magnetic resonance (MR) image reconstruction. Nevertheless, to properly learn a powerful and robust model, these methods generally require large quantities of data, the collection of which from multiple centers may cause ethical and data privacy violation issues. Lately, federated learning has served as a promising solution to exploit multi-center data while getting rid of the data transfer between institutions. However, high heterogeneity exists in the data from different centers, and existing federated learning methods tend to use average aggregation methods to combine the client's information, which limits the performance and generalization capability of the trained models. In this paper, we propose a Model-based Federated learning framework (ModFed). ModFed has three major contributions: 1) Different from the existing data-driven federated learning methods, model-driven neural networks are designed to relieve each client's dependency on large data; 2) An adaptive dynamic aggregation scheme is proposed to address the data heterogeneity issue and improve the generalization capability and robustness the trained neural network models; 3) A spatial Laplacian attention mechanism and a personalized client-side loss regularization are introduced to capture the detailed information for accurate image reconstruction. ModFed is evaluated on three in-vivo datasets. Experimental results show that ModFed has strong capability in improving image reconstruction quality and enforcing model generalization capability when compared to the other five state-of-the-art federated learning approaches. Codes will be made available at https://github.com/ternencewu123/ModFed.
Abstract:Lately, deep learning has been extensively investigated for accelerating dynamic magnetic resonance (MR) imaging, with encouraging progresses achieved. However, without fully sampled reference data for training, current approaches may have limited abilities in recovering fine details or structures. To address this challenge, this paper proposes a self-supervised collaborative learning framework (SelfCoLearn) for accurate dynamic MR image reconstruction from undersampled k-space data. The proposed framework is equipped with three important components, namely, dual-network collaborative learning, reunderampling data augmentation and a specially designed co-training loss. The framework is flexible to be integrated with both data-driven networks and model-based iterative un-rolled networks. Our method has been evaluated on in-vivo dataset and compared it to four state-of-the-art methods. Results show that our method possesses strong capabilities in capturing essential and inherent representations for direct reconstructions from the undersampled k-space data and thus enables high-quality and fast dynamic MR imaging.