Abstract:3D content generation from text prompts or single images has made remarkable progress in quality and speed recently. One of its dominant paradigms involves generating consistent multi-view images followed by a sparse-view reconstruction. However, due to the challenge of directly deforming the mesh representation to approach the target topology, most methodologies learn an implicit representation (such as NeRF) during the sparse-view reconstruction and acquire the target mesh by a post-processing extraction. Although the implicit representation can effectively model rich 3D information, its training typically entails a long convergence time. In addition, the post-extraction operation from the implicit field also leads to undesirable visual artifacts. In this paper, we propose FlexiDreamer, a novel single image-to-3d generation framework that reconstructs the target mesh in an end-to-end manner. By leveraging a flexible gradient-based extraction known as FlexiCubes, our method circumvents the defects brought by the post-processing and facilitates a direct acquisition of the target mesh. Furthermore, we incorporate a multi-resolution hash grid encoding scheme that progressively activates the encoding levels into the implicit field in FlexiCubes to help capture geometric details for per-step optimization. Notably, FlexiDreamer recovers a dense 3D structure from a single-view image in approximately 1 minute on a single NVIDIA A100 GPU, outperforming previous methodologies by a large margin.
Abstract:Depth estimation is a cornerstone of perception in autonomous driving and robotic systems. The considerable cost and relatively sparse data acquisition of LiDAR systems have led to the exploration of cost-effective alternatives, notably, self-supervised depth estimation. Nevertheless, current self-supervised depth estimation methods grapple with several limitations: (1) the failure to adequately leverage informative multi-camera views. (2) the limited capacity to handle dynamic objects effectively. To address these challenges, we present BEVScope, an innovative approach to self-supervised depth estimation that harnesses Bird's-Eye-View (BEV) features. Concurrently, we propose an adaptive loss function, specifically designed to mitigate the complexities associated with moving objects. Empirical evaluations conducted on the Nuscenes dataset validate our approach, demonstrating competitive performance. Code will be released at https://github.com/myc634/BEVScope.
Abstract:Scene completion refers to obtaining dense scene representation from an incomplete perception of complex 3D scenes. This helps robots detect multi-scale obstacles and analyse object occlusions in scenarios such as autonomous driving. Recent advances show that implicit representation learning can be leveraged for continuous scene completion and achieved through physical constraints like Eikonal equations. However, former Eikonal completion methods only demonstrate results on watertight meshes at a scale of tens of meshes. None of them are successfully done for non-watertight LiDAR point clouds of open large scenes at a scale of thousands of scenes. In this paper, we propose a novel Eikonal formulation that conditions the implicit representation on localized shape priors which function as dense boundary value constraints, and demonstrate it works on SemanticKITTI and SemanticPOSS. It can also be extended to semantic Eikonal scene completion with only small modifications to the network architecture. With extensive quantitative and qualitative results, we demonstrate the benefits and drawbacks of existing Eikonal methods, which naturally leads to the new locally conditioned formulation. Notably, we improve IoU from 31.7% to 51.2% on SemanticKITTI and from 40.5% to 48.7% on SemanticPOSS. We extensively ablate our methods and demonstrate that the proposed formulation is robust to a wide spectrum of implementation hyper-parameters. Codes and models are publicly available at https://github.com/AIR-DISCOVER/LODE.