Abstract:Recent development of Large Vision-Language Models (LVLMs) has attracted growing attention within the AI landscape for its practical implementation potential. However, ``hallucination'', or more specifically, the misalignment between factual visual content and corresponding textual generation, poses a significant challenge of utilizing LVLMs. In this comprehensive survey, we dissect LVLM-related hallucinations in an attempt to establish an overview and facilitate future mitigation. Our scrutiny starts with a clarification of the concept of hallucinations in LVLMs, presenting a variety of hallucination symptoms and highlighting the unique challenges inherent in LVLM hallucinations. Subsequently, we outline the benchmarks and methodologies tailored specifically for evaluating hallucinations unique to LVLMs. Additionally, we delve into an investigation of the root causes of these hallucinations, encompassing insights from the training data and model components. We also critically review existing methods for mitigating hallucinations. The open questions and future directions pertaining to hallucinations within LVLMs are discussed to conclude this survey.
Abstract:Error correction techniques remain effective to refine outputs from automatic speech recognition (ASR) models. Existing end-to-end error correction methods based on an encoder-decoder architecture process all tokens in the decoding phase, creating undesirable latency. In this paper, we propose an ASR error correction method utilizing the predictions of correction operations. More specifically, we construct a predictor between the encoder and the decoder to learn if a token should be kept ("K"), deleted ("D"), or changed ("C") to restrict decoding to only part of the input sequence embeddings (the "C" tokens) for fast inference. Experiments on three public datasets demonstrate the effectiveness of the proposed approach in reducing the latency of the decoding process in ASR correction. It enhances the inference speed by at least three times (3.4 and 5.7 times) while maintaining the same level of accuracy (with WER reductions of 0.53% and 1.69% respectively) for our two proposed models compared to a solid encoder-decoder baseline. In the meantime, we produce and release a benchmark dataset contributing to the ASR error correction community to foster research along this line.