Abstract:Backscatter communication (BC) becomes a promising energy-efficient solution for future wireless sensor networks (WSNs). Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs), yet conventional UAVs rely on omni-directional fixed-position antennas (FPAs), limiting channel gain and prolonging data collection time. To address this issue, we consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility. The MA enhances channel gain by precisely aiming its main lobe at each BD, focusing transmission power for efficient communication. Our goal is to minimize the total data collection time by jointly optimizing the UAV's trajectory and the MA's orientation. We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space. To ensure stability during training, we adopt Soft Actor-Critic (SAC) algorithm that balances exploration with reward maximization for efficient and reliable learning. Simulation results demonstrate that our proposed MA-equipped UAV with SAC outperforms both FPA-equipped UAVs and other RL methods, achieving significant reductions in both data collection time and energy consumption.
Abstract:Backscattering tag-to-tag networks (BTTNs) represent a passive radio frequency identification (RFID) system that enables direct communication between tags within an external radio frequency (RF) field. However, low spectral efficiency and short-range communication capabilities, along with the ultra-low power nature of the tags, create significant challenges for reliable and practical applications of BTTNs. To address these challenges, this paper introduces integrating an indoor reconfigurable intelligent surface (RIS) into BTTN and studying RIS's impact on the system's performance. To that end, we first derive compact analytical expressions of the probability density function (PDF) and cumulative distribution function (CDF) for the received signal-to-noise ratio (SNR) at the receiver tag by exploiting the moment matching technique. Then, based on the derived PDF and CDF, we further derive analytical expressions of outage probability (OP), bit error rate (BER), and average capacity (AC) rate. Eventually, the Monte Carlo simulation is used to validate the accuracy of the analytical results, revealing that utilizing RIS can greatly improve the performance of BTTNs in terms of AC, BER, OP, and coverage region relative to traditional BTTNs setups that do not incorporate RIS.
Abstract:This paper studies the performance of a wireless powered communication network (WPCN) under the non-orthogonal multiple access (NOMA) scheme, where users take advantage of an emerging fluid antenna system (FAS). More precisely, we consider a scenario where a transmitter is powered by a remote power beacon (PB) to send information to the planar NOMA FAS-equipped users through Rayleigh fading channels. After introducing the distribution of the equivalent channel coefficients to the users, we derive compact analytical expressions for the outage probability (OP) in order to evaluate the system performance. Additionally, we present asymptotic OP in the high signal-to-noise ratio (SNR) regime. Eventually, results reveal that deploying the FAS with only one activated port in NOMA users can significantly enhance the WPCN performance compared with using traditional antenna systems (TAS).
Abstract:The 3GPP has recently conducted a study on the Ambient Internet of Things (AIoT), with a particular emphasis on examining backscatter communications as one of the primary techniques under consideration. Previous investigations into Ambient Backscatter Communications (AmBC) within the long term evolution (LTE) downlink have shown that it is feasible to utilize the user equipment channel estimator as a receiver for demodulating frequency shift keyed (FSK) messages transmitted by the backscatter devices. In practical deployment scenarios, the backscattered link often experiences a low signal-to-noise ratio, leading to subpar bit error rate (BER) performance in the case of uncoded transmissions. In this paper, we propose the adoption of the same convolutional coding methodology for backscatter links that is already employed for LTE downlink control signals. This approach facilitates the reuse of identical demodulation functions at the modem for both control signals and backscattered AIoT messages. To assess the performance of the proposed scheme, we conducted experiments utilizing real LTE downlink signals generated by a mobile operator within an office environment. When compared to uncoded FSK, convolutional channel coding delivers a notable gain of approximately 6 dB at a BER of $10^{-3}$. Consequently, the AmBC system demonstrates a high level of reliability, achieving a BER of $10^{-3}$ at a Signal-to-Noise Ratio (SNR) of 5 dB.
Abstract:Effective solutions for intelligent data collection in terrestrial cellular networks are crucial, especially in the context of Internet of Things applications. The limited spectrum and coverage area of terrestrial base stations pose challenges in meeting the escalating data rate demands of network users. Unmanned aerial vehicles, known for their high agility, mobility, and flexibility, present an alternative means to offload data traffic from terrestrial BSs, serving as additional access points. This paper introduces a novel approach to efficiently maximize the utilization of multiple UAVs for data traffic offloading from terrestrial BSs. Specifically, the focus is on maximizing user association with UAVs by jointly optimizing UAV trajectories and users association indicators under quality of service constraints. Since, the formulated UAVs control problem is nonconvex and combinatorial, this study leverages the multi agent reinforcement learning framework. In this framework, each UAV acts as an independent agent, aiming to maintain inter UAV cooperative behavior. The proposed approach utilizes the finite state Markov decision process to account for UAVs velocity constraints and the relationship between their trajectories and state space. A low complexity distributed state action reward state action algorithm is presented to determine UAVs optimal sequential decision making policies over training episodes. The extensive simulation results validate the proposed analysis and offer valuable insights into the optimal UAV trajectories. The derived trajectories demonstrate superior average UAV association performance compared to benchmark techniques such as Q learning and particle swarm optimization.
Abstract:Long Term Evolution (LTE) signal is ubiquitously present in electromagnetic (EM) background environment, which make it an attractive signal source for the ambient backscatter communications (AmBC). In this paper, we propose a system, in which a backscatter device (BD) introduces artificial Doppler shift to the channel which is larger than the natural Doppler but still small enough such that it can be tracked by the channel estimator at the User Equipment (UE). Channel estimation is done using the downlink cell specific reference signals (CRS) that are present regardless the UE being attached to the network or not. FSK was selected due to its robust operation in a fading channel. We describe the whole AmBC system, use two receivers. Finally, numerical simulations and measurements are provided to validate the proposed FSK AmBC performance.
Abstract:Long Term Evolution (LTE) systems provide ubiquitous coverage for mobile communications, which makes it a promising candidate to be used as a signal source in the ambient backscatter communications. In this paper, we propose a system in which a backscatter device modulates the ambient LTE signal by changing its reflection coefficient and the receiver uses the LTE Cell Specific Reference Signals (CRS) to estimate the channel and demodulates the backscattered signal from the obtained channel impulse response estimates. We first outline the overall system, discuss the receiver operation, and then provide experimental evidence on the practicality of the proposed system.
Abstract:We address the localization of a reconfigurable intelligent surface (RIS) for a single-input single-output multi-carrier system using bi-static sensing between a fixed transmitter and a fixed receiver. Due to the deployment of RISs with a large dimension, near-field (NF) scenarios are likely to occur, especially for indoor applications, and are the focus of this work. We first derive the Cramer-Rao bounds (CRBs) on the estimation error of the RIS position and orientation and the time of arrival (TOA) for the path transmitter-RIS-receiver. We propose a multi-stage low-complexity estimator for RIS localization purposes. In this proposed estimator, we first perform a line search to estimate the TOA. Then, we use the far-field approximation of the NF signal model to implicitly estimate the angle of arrival and the angle of departure at the RIS center. Finally, the RIS position and orientation estimate are refined via a quasi-Newton method. Simulation results reveal that the proposed estimator can attain the CRBs. We also investigate the effects of several influential factors on the accuracy of the proposed estimator like the RIS size, transmitted power, system bandwidth, and RIS position and orientation.
Abstract:Enabling cellular connectivity for drones introduces a wide set of challenges and opportunities. Communication of cellular-connected drones is influenced by 3-dimensional mobility and line-of-sight channel characteristics which results in higher number of handovers with increasing altitude. Our cell planning simulations in coexistence of aerial and terrestrial users indicate that the severe interference from drones to base stations is a major challenge for uplink communications of terrestrial users. Here, we first present the major challenges in co-existence of terrestrial and drone communications by considering real geographical network data for Stockholm. Then, we derive analytical models for the key performance indicators (KPIs), including communications delay and interference over cellular networks, and formulate the handover and radio resource management (H-RRM) optimization problem. Afterwards, we transform this problem into a machine learning problem, and propose a deep reinforcement learning solution to solve H-RRM problem. Finally, using simulation results, we present how the speed and altitude of drones, and the tolerable level of interference, shape the optimal H-RRM policy in the network. Especially, the heat-maps of handover decisions in different drone's altitudes/speeds have been presented, which promote a revision of the legacy handover schemes and redefining the boundaries of cells in the sky.