Abstract:The commonsense reasoning capabilities of vision-language models (VLMs), especially in abductive reasoning and defeasible reasoning, remain poorly understood. Most benchmarks focus on typical visual scenarios, making it difficult to discern whether model performance stems from keen perception and reasoning skills, or reliance on pure statistical recall. We argue that by focusing on atypical events in videos, clearer insights can be gained on the core capabilities of VLMs. Explaining and understanding such out-of-distribution events requires models to extend beyond basic pattern recognition and regurgitation of their prior knowledge. To this end, we introduce BlackSwanSuite, a benchmark for evaluating VLMs' ability to reason about unexpected events through abductive and defeasible tasks. Our tasks artificially limit the amount of visual information provided to models while questioning them about hidden unexpected events, or provide new visual information that could change an existing hypothesis about the event. We curate a comprehensive benchmark suite comprising over 3,800 MCQ, 4,900 generative and 6,700 yes/no tasks, spanning 1,655 videos. After extensively evaluating various state-of-the-art VLMs, including GPT-4o and Gemini 1.5 Pro, as well as open-source VLMs such as LLaVA-Video, we find significant performance gaps of up to 32% from humans on these tasks. Our findings reveal key limitations in current VLMs, emphasizing the need for enhanced model architectures and training strategies.
Abstract:Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.
Abstract:Understanding the speaker's intended meaning often involves drawing commonsense inferences to reason about what is not stated explicitly. In multi-event sentences, it requires understanding the relationships between events based on contextual knowledge. We propose COMET-M (Multi-Event), an event-centric commonsense model capable of generating commonsense inferences for a target event within a complex sentence. COMET-M builds upon COMET (Bosselut et al., 2019), which excels at generating event-centric inferences for simple sentences, but struggles with the complexity of multi-event sentences prevalent in natural text. To overcome this limitation, we curate a multi-event inference dataset of 35K human-written inferences. We trained COMET-M on the human-written inferences and also created baselines using automatically labeled examples. Experimental results demonstrate the significant performance improvement of COMET-M over COMET in generating multi-event inferences. Moreover, COMET-M successfully produces distinct inferences for each target event, taking the complete context into consideration. COMET-M holds promise for downstream tasks involving natural text such as coreference resolution, dialogue, and story understanding.
Abstract:Event coreference models cluster event mentions pertaining to the same real-world event. Recent models rely on contextualized representations to recognize coreference among lexically or contextually similar mentions. However, models typically fail to leverage commonsense inferences, which is particularly limiting for resolving lexically-divergent mentions. We propose a model that extends event mentions with temporal commonsense inferences. Given a complex sentence with multiple events, e.g., "The man killed his wife and got arrested", with the target event "arrested", our model generates plausible events that happen before the target event - such as "the police arrived", and after it, such as "he was sentenced". We show that incorporating such inferences into an existing event coreference model improves its performance, and we analyze the coreferences in which such temporal knowledge is required.
Abstract:The unprecedented growth in the availability of data of all types and qualities and the emergence of the field of data science has provided an impetus to finally realizing the implementation of the full breadth of the Nolan and Temple Lang proposed integration of computing concepts into statistics curricula at all levels in statistics and new data science programs and courses. Moreover, data science, implemented carefully, opens accessible pathways to stem for students for whom neither mathematics nor computer science are natural affinities, and who would traditionally be excluded. We discuss a proposal for the stealth development of computational skills in students' first exposure to data science through careful, scaffolded exposure to computation and its power. The intent of this approach is to support students, regardless of interest and self-efficacy in coding, in becoming data-driven learners, who are capable of asking complex questions about the world around them, and then answering those questions through the use of data-driven inquiry. This discussion is presented in the context of the International Data Science in Schools Project which recently published computer science and statistics consensus curriculum frameworks for a two-year secondary school data science program, designed to make data science accessible to all.
Abstract:Accurate forecasts of fine particulate matter (PM 2.5) from wildfire smoke are crucial to safeguarding cardiopulmonary public health. Existing forecasting systems are trained on sparse and inaccurate ground truths, and do not take sufficient advantage of important spatial inductive biases. In this work, we present a convolutional neural network which preserves sparsity invariance throughout, and leverages multitask learning to perform dense forecasts of PM 2.5values. We demonstrate that our model outperforms two existing smoke forecasting systems during the 2018 and 2019 wildfire season in British Columbia, Canada, predicting PM 2.5 at a grid resolution of 10 km, 24 hours in advance with high fidelity. Most interestingly, our model also generalizes to meaningful smoke dispersion patterns despite training with irregularly distributed ground truth PM 2.5 values available in only 0.5% of grid cells.