Abstract:Low-resource languages such as isiZulu and isiXhosa face persistent challenges in machine translation due to limited parallel data and linguistic resources. Recent advances in large language models suggest that self-reflection, prompting a model to critique and revise its own outputs, can improve reasoning quality and factual consistency. Building on this idea, this paper introduces Reflective Translation, a prompt-based framework in which a model generates an initial translation, produces a structured self-critique, and then uses this reflection to generate a refined translation. The approach is evaluated on English-isiZulu and English-isiXhosa translation using OPUS-100 and NTREX-African, across multiple prompting strategies and confidence thresholds. Results show consistent improvements in both BLEU and COMET scores between first- and second-pass translations, with average gains of up to +0.22 BLEU and +0.18 COMET. Statistical significance testing using paired nonparametric tests confirms that these improvements are robust. The proposed method is model-agnostic, requires no fine-tuning, and introduces a reflection-augmented dataset that can support future supervised or analysis-driven work. These findings demonstrate that structured self-reflection is a practical and effective mechanism for improving translation quality in low-resource settings.
Abstract:Recently, Large Language Models (LLMs) have dominated much of the artificial intelligence scene with their ability to process and generate natural languages. However, the majority of LLM research and development remains English-centric, leaving low-resource languages such as those in the Southeast Asian (SEA) region under-represented. To address this representation gap, we introduce Llama-SEA-LION-v3-8B-IT and Gemma-SEA-LION-v3-9B-IT, two cutting-edge multilingual LLMs designed for SEA languages. The SEA-LION family of LLMs supports 11 SEA languages, namely English, Chinese, Indonesian, Vietnamese, Malay, Thai, Burmese, Lao, Filipino, Tamil, and Khmer. Our work leverages large-scale multilingual continued pre-training with a comprehensive post-training regime involving multiple stages of instruction fine-tuning, alignment, and model merging. Evaluation results on multilingual benchmarks indicate that our models achieve state-of-the-art performance across LLMs supporting SEA languages. We open-source the models to benefit the wider SEA community.