Abstract:Deep Neural Network classifiers are vulnerable to adversarial attack, where an imperceptible perturbation could result in misclassification. However, the vulnerability of DNN-based image ranking systems remains under-explored. In this paper, we propose two attacks against deep ranking systems, i.e., Candidate Attack and Query Attack, that can raise or lower the rank of chosen candidates by adversarial perturbations. Specifically, the expected ranking order is first represented as a set of inequalities, and then a triplet-like objective function is designed to obtain the optimal perturbation. Conversely, an anti-collapse triplet defense is proposed to improve the ranking model robustness against all proposed attacks, where the model learns to prevent the positive and negative samples being pulled close to each other by adversarial attack. To comprehensively measure the empirical adversarial robustness of a ranking model with our defense, we propose an empirical robustness score, which involves a set of representative attacks against ranking models. Our adversarial ranking attacks and defenses are evaluated on MNIST, Fashion-MNIST, CUB200-2011, CARS196 and Stanford Online Products datasets. Experimental results demonstrate that a typical deep ranking system can be effectively compromised by our attacks. Nevertheless, our defense can significantly improve the ranking system robustness, and simultaneously mitigate a wide range of attacks.
Abstract:The object of Weakly-supervised Temporal Action Localization (WS-TAL) is to localize all action instances in an untrimmed video with only video-level supervision. Due to the lack of frame-level annotations during training, current WS-TAL methods rely on attention mechanisms to localize the foreground snippets or frames that contribute to the video-level classification task. This strategy frequently confuse context with the actual action, in the localization result. Separating action and context is a core problem for precise WS-TAL, but it is very challenging and has been largely ignored in the literature. In this paper, we introduce an Action-Context Separation Network (ACSNet) that explicitly takes into account context for accurate action localization. It consists of two branches (i.e., the Foreground-Background branch and the Action-Context branch). The Foreground- Background branch first distinguishes foreground from background within the entire video while the Action-Context branch further separates the foreground as action and context. We associate video snippets with two latent components (i.e., a positive component and a negative component), and their different combinations can effectively characterize foreground, action and context. Furthermore, we introduce extended labels with auxiliary context categories to facilitate the learning of action-context separation. Experiments on THUMOS14 and ActivityNet v1.2/v1.3 datasets demonstrate the ACSNet outperforms existing state-of-the-art WS-TAL methods by a large margin.
Abstract:Recent studies unveil the vulnerabilities of deep ranking models, where an imperceptible perturbation can trigger dramatic changes in the ranking result. While previous attempts focus on manipulating absolute ranks of certain candidates, the possibility of adjusting their relative order remains under-explored. In this paper, we formulate a new adversarial attack against deep ranking systems, i.e., the Order Attack, which covertly alters the relative order among a selected set of candidates according to an attacker-specified permutation, with limited interference to other unrelated candidates. Specifically, it is formulated as a triplet-style loss imposing an inequality chain reflecting the specified permutation. However, direct optimization of such white-box objective is infeasible in a real-world attack scenario due to various black-box limitations. To cope with them, we propose a Short-range Ranking Correlation metric as a surrogate objective for black-box Order Attack to approximate the white-box method. The Order Attack is evaluated on the Fashion-MNIST and Stanford-Online-Products datasets under both white-box and black-box threat models. The black-box attack is also successfully implemented on a major e-commerce platform. Comprehensive experimental evaluations demonstrate the effectiveness of the proposed methods, revealing a new type of ranking model vulnerability.
Abstract:Weakly-supervised Temporal Action Localization (W-TAL) aims to classify and localize all action instances in an untrimmed video under only video-level supervision. However, without frame-level annotations, it is challenging for W-TAL methods to identify false positive action proposals and generate action proposals with precise temporal boundaries. In this paper, we present a Two-Stream Consensus Network (TSCN) to simultaneously address these challenges. The proposed TSCN features an iterative refinement training method, where a frame-level pseudo ground truth is iteratively updated, and used to provide frame-level supervision for improved model training and false positive action proposal elimination. Furthermore, we propose a new attention normalization loss to encourage the predicted attention to act like a binary selection, and promote the precise localization of action instance boundaries. Experiments conducted on the THUMOS14 and ActivityNet datasets show that the proposed TSCN outperforms current state-of-the-art methods, and even achieves comparable results with some recent fully-supervised methods.
Abstract:Deep Neural Network (DNN) classifiers are vulnerable to adversarial attack, where an imperceptible perturbation could result in misclassification. However, the vulnerability of DNN-based image ranking systems remains under-explored. In this paper, we propose two attacks against deep ranking systems, i.e., Candidate Attack and Query Attack, that can raise or lower the rank of chosen candidates by adversarial perturbations. Specifically, the expected ranking order is first represented as a set of inequalities, and then a triplet-like objective function is designed to obtain the optimal perturbation. Conversely, a defense method is also proposed to improve the ranking system robustness, which can mitigate all the proposed attacks simultaneously. Our adversarial ranking attacks and defense are evaluated on datasets including MNIST, Fashion-MNIST, and Stanford-Online-Products. Experimental results demonstrate that a typical deep ranking system can be effectively compromised by our attacks. Meanwhile, the system robustness can be moderately improved with our defense. Furthermore, the transferable and universal properties of our adversary illustrate the possibility of realistic black-box attack.
Abstract:For visual-semantic embedding, the existing methods normally treat the relevance between queries and candidates in a bipolar way -- relevant or irrelevant, and all "irrelevant" candidates are uniformly pushed away from the query by an equal margin in the embedding space, regardless of their various proximity to the query. This practice disregards relatively discriminative information and could lead to suboptimal ranking in the retrieval results and poorer user experience, especially in the long-tail query scenario where a matching candidate may not necessarily exist. In this paper, we introduce a continuous variable to model the relevance degree between queries and multiple candidates, and propose to learn a coherent embedding space, where candidates with higher relevance degrees are mapped closer to the query than those with lower relevance degrees. In particular, the new ladder loss is proposed by extending the triplet loss inequality to a more general inequality chain, which implements variable push-away margins according to respective relevance degrees. In addition, a proper Coherent Score metric is proposed to better measure the ranking results including those "irrelevant" candidates. Extensive experiments on multiple datasets validate the efficacy of our proposed method, which achieves significant improvement over existing state-of-the-art methods.
Abstract:Mutual calibration between color and depth cameras is a challenging topic in multi-modal data registration. In this paper, we are confronted with a "Bimodal Stereo" problem, which aims to solve camera pose from a pair of an uncalibrated color image and a depth map from different views automatically. To address this problem, an iterative Shape-from-Shading (SfS) based framework is proposed to estimate shape and pose simultaneously. In the pipeline, the estimated shape is refined by the shape prior from the given depth map under the estimated pose. Meanwhile, the estimated pose is improved by the registration of estimated shape and shape from given depth map. We also introduce a shading based refinement in the pipeline to address noisy depth map with holes. Extensive experiments showed that through our method, both the depth map, the recovered shape as well as its pose can be desirably refined and recovered.
Abstract:Spatio-temporal contexts are crucial in understanding human actions in videos. Recent state-of-the-art Convolutional Neural Network (ConvNet) based action recognition systems frequently involve 3D spatio-temporal ConvNet filters, chunking videos into fixed length clips and Long Short Term Memory (LSTM) networks. Such architectures are designed to take advantage of both short term and long term temporal contexts, but also requires the accumulation of a predefined number of video frames (e.g., to construct video clips for 3D ConvNet filters, to generate enough inputs for LSTMs). For applications that require low-latency online predictions of fast-changing action scenes, a new action recognition system is proposed in this paper. Termed "Weighted Multi-Region Convolutional Neural Network" (WMR ConvNet), the proposed system is LSTM-free, and is based on 2D ConvNet that does not require the accumulation of video frames for 3D ConvNet filtering. Unlike early 2D ConvNets that are based purely on RGB frames and optical flow frames, the WMR ConvNet is designed to simultaneously capture multiple spatial and short term temporal cues (e.g., human poses, occurrences of objects in the background) with both the primary region (foreground) and secondary regions (mostly background). On both the UCF101 and HMDB51 datasets, the proposed WMR ConvNet achieves the state-of-the-art performance among competing low-latency algorithms. Furthermore, WMR ConvNet even outperforms the 3D ConvNet based C3D algorithm that requires video frame accumulation. In an ablation study with the optical flow ConvNet stream removed, the ablated WMR ConvNet nevertheless outperforms competing algorithms.
Abstract:Visual attributes in individual video frames, such as the presence of characteristic objects and scenes, offer substantial information for action recognition in videos. With individual 2D video frame as input, visual attributes extraction could be achieved effectively and efficiently with more sophisticated convolutional neural network than current 3D CNNs with spatio-temporal filters, thanks to fewer parameters in 2D CNNs. In this paper, the integration of visual attributes (including detection, encoding and classification) into multi-stream 3D CNN is proposed for action recognition in trimmed videos, with the proposed visual Attribute-augmented 3D CNN (A3D) framework. The visual attribute pipeline includes an object detection network, an attributes encoding network and a classification network. Our proposed A3D framework achieves state-of-the-art performance on both the HMDB51 and the UCF101 datasets.
Abstract:Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area of natural language processing, we propose the Attention-based Temporal Weighted CNN (ATW), which embeds a visual attention model into a temporal weighted multi-stream CNN. This attention model is simply implemented as temporal weighting yet it effectively boosts the recognition performance of video representations. Besides, each stream in the proposed ATW framework is capable of end-to-end training, with both network parameters and temporal weights optimized by stochastic gradient descent (SGD) with backpropagation. Our experiments show that the proposed attention mechanism contributes substantially to the performance gains with the more discriminative snippets by focusing on more relevant video segments.