University of Tübingen
Abstract:With the increasing amount of renewable energy in the grid, long-term wind power forecasting for multiple decades becomes more critical. In these long-term forecasts, climate data is essential as it allows us to account for climate change. Yet the resolution of climate models is often very coarse. In this paper, we show that by including turbine locations when downscaling with Gaussian Processes, we can generate valuable aggregate wind power predictions despite the low resolution of the CMIP6 climate models. This work is a first step towards multi-decadal turbine-location-aware wind power forecasting using global climate model output.
Abstract:Deep learning has recently gained immense popularity in the Earth sciences as it enables us to formulate purely data-driven models of complex Earth system processes. Deep learning-based weather prediction (DLWP) models have made significant progress in the last few years, achieving forecast skills comparable to established numerical weather prediction (NWP) models with comparatively lesser computational costs. In order to train accurate, reliable, and tractable DLWP models with several millions of parameters, the model design needs to incorporate suitable inductive biases that encode structural assumptions about the data and modelled processes. When chosen appropriately, these biases enable faster learning and better generalisation to unseen data. Although inductive biases play a crucial role in successful DLWP models, they are often not stated explicitly and how they contribute to model performance remains unclear. Here, we review and analyse the inductive biases of six state-of-the-art DLWP models, involving a deeper look at five key design elements: input data, forecasting objective, loss components, layered design of the deep learning architectures, and optimisation methods. We show how the design choices made in each of the five design elements relate to structural assumptions. Given recent developments in the broader DL community, we anticipate that the future of DLWP will likely see a wider use of foundation models -- large models pre-trained on big databases with self-supervised learning -- combined with explicit physics-informed inductive biases that allow the models to provide competitive forecasts even at the more challenging subseasonal-to-seasonal scales.
Abstract:Wind power and other forms of renewable energy sources play an ever more important role in the energy supply of today's power grids. Forecasting renewable energy sources has therefore become essential in balancing the power grid. While a lot of focus is placed on new forecasting methods, little attention is given on how to compare, reproduce and transfer the methods to other use cases and data. One reason for this lack of attention is the limited availability of open-source datasets, as many currently used datasets are non-disclosed and make reproducibility of research impossible. This unavailability of open-source datasets is especially prevalent in commercially interesting fields such as wind power forecasting. However, with this paper we want to enable researchers to compare their methods on publicly available datasets by providing the, to our knowledge, largest up-to-date overview of existing open-source wind power datasets, and a categorization into different groups of datasets that can be used for wind power forecasting. We show that there are publicly available datasets sufficient for wind power forecasting tasks and discuss the different data groups properties to enable researchers to choose appropriate open-source datasets and compare their methods on them.
Abstract:Deep Neural Networks are able to solve many complex tasks with less engineering effort and better performance. However, these networks often use data for training and evaluation without investigating its representation, i.e.~the form of the used data. In the present paper, we analyze the impact of data representations on the performance of Deep Neural Networks using energy time series forecasting. Based on an overview of exemplary data representations, we select four exemplary data representations and evaluate them using two different Deep Neural Network architectures and three forecasting horizons on real-world energy time series. The results show that, depending on the forecast horizon, the same data representations can have a positive or negative impact on the accuracy of Deep Neural Networks.
Abstract:Time series data are fundamental for a variety of applications, ranging from financial markets to energy systems. Due to their importance, the number and complexity of tools and methods used for time series analysis is constantly increasing. However, due to unclear APIs and a lack of documentation, researchers struggle to integrate them into their research projects and replicate results. Additionally, in time series analysis there exist many repetitive tasks, which are often re-implemented for each project, unnecessarily costing time. To solve these problems we present \texttt{pyWATTS}, an open-source Python-based package that is a non-sequential workflow automation tool for the analysis of time series data. pyWATTS includes modules with clearly defined interfaces to enable seamless integration of new or existing methods, subpipelining to easily reproduce repetitive tasks, load and save functionality to simply replicate results, and native support for key Python machine learning libraries such as scikit-learn, PyTorch, and Keras.