Abstract:Large language models (LLMs) are increasingly being adapted to achieve task-specificity for deployment in real-world decision systems. Several previous works have investigated the bias transfer hypothesis (BTH) by studying the effect of the fine-tuning adaptation strategy on model fairness to find that fairness in pre-trained masked language models have limited effect on the fairness of models when adapted using fine-tuning. In this work, we expand the study of BTH to causal models under prompt adaptations, as prompting is an accessible, and compute-efficient way to deploy models in real-world systems. In contrast to previous works, we establish that intrinsic biases in pre-trained Mistral, Falcon and Llama models are strongly correlated (rho >= 0.94) with biases when the same models are zero- and few-shot prompted, using a pronoun co-reference resolution task. Further, we find that bias transfer remains strongly correlated even when LLMs are specifically prompted to exhibit fair or biased behavior (rho >= 0.92), and few-shot length and stereotypical composition are varied (rho >= 0.97). Our findings highlight the importance of ensuring fairness in pre-trained LLMs, especially when they are later used to perform downstream tasks via prompt adaptation.
Abstract:Accommodating human preferences is essential for creating AI agents that deliver personalized and effective interactions. Recent work has shown the potential for LLMs to infer preferences from user interactions, but they often produce broad and generic preferences, failing to capture the unique and individualized nature of human preferences. This paper introduces PREDICT, a method designed to enhance the precision and adaptability of inferring preferences. PREDICT incorporates three key elements: (1) iterative refinement of inferred preferences, (2) decomposition of preferences into constituent components, and (3) validation of preferences across multiple trajectories. We evaluate PREDICT on two distinct environments: a gridworld setting and a new text-domain environment (PLUME). PREDICT more accurately infers nuanced human preferences improving over existing baselines by 66.2\% (gridworld environment) and 41.0\% (PLUME).
Abstract:Preference-based reinforcement learning (PbRL) aligns a robot behavior with human preferences via a reward function learned from binary feedback over agent behaviors. We show that dynamics-aware reward functions improve the sample efficiency of PbRL by an order of magnitude. In our experiments we iterate between: (1) learning a dynamics-aware state-action representation (z^{sa}) via a self-supervised temporal consistency task, and (2) bootstrapping the preference-based reward function from (z^{sa}), which results in faster policy learning and better final policy performance. For example, on quadruped-walk, walker-walk, and cheetah-run, with 50 preference labels we achieve the same performance as existing approaches with 500 preference labels, and we recover 83\% and 66\% of ground truth reward policy performance versus only 38\% and 21\%. The performance gains demonstrate the benefits of explicitly learning a dynamics-aware reward model. Repo: \texttt{https://github.com/apple/ml-reed}.
Abstract:We show that large language models (LLMs) can be adapted to be generalizable policies for embodied visual tasks. Our approach, called Large LAnguage model Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take as input text instructions and visual egocentric observations and output actions directly in the environment. Using reinforcement learning, we train LLaRP to see and act solely through environmental interactions. We show that LLaRP is robust to complex paraphrasings of task instructions and can generalize to new tasks that require novel optimal behavior. In particular, on 1,000 unseen tasks it achieves 42% success rate, 1.7x the success rate of other common learned baselines or zero-shot applications of LLMs. Finally, to aid the community in studying language conditioned, massively multi-task, embodied AI problems we release a novel benchmark, Language Rearrangement, consisting of 150,000 training and 1,000 testing tasks for language-conditioned rearrangement. Video examples of LLaRP in unseen Language Rearrangement instructions are at https://llm-rl.github.io.