Abstract:In this era of videos, automatic video editing techniques attract more and more attention from industry and academia since they can reduce workloads and lower the requirements for human editors. Existing automatic editing systems are mainly scene- or event-specific, e.g., soccer game broadcasting, yet the automatic systems for general editing, e.g., movie or vlog editing which covers various scenes and events, were rarely studied before, and converting the event-driven editing method to a general scene is nontrivial. In this paper, we propose a two-stage scheme for general editing. Firstly, unlike previous works that extract scene-specific features, we leverage the pre-trained Vision-Language Model (VLM) to extract the editing-relevant representations as editing context. Moreover, to close the gap between the professional-looking videos and the automatic productions generated with simple guidelines, we propose a Reinforcement Learning (RL)-based editing framework to formulate the editing problem and train the virtual editor to make better sequential editing decisions. Finally, we evaluate the proposed method on a more general editing task with a real movie dataset. Experimental results demonstrate the effectiveness and benefits of the proposed context representation and the learning ability of our RL-based editing framework.
Abstract:Simulation has enabled unprecedented compute-scalable approaches to robot learning. However, many existing simulation frameworks typically support a narrow range of scenes/tasks and lack features critical for scaling generalizable robotics and sim2real. We introduce and open source ManiSkill3, the fastest state-visual GPU parallelized robotics simulator with contact-rich physics targeting generalizable manipulation. ManiSkill3 supports GPU parallelization of many aspects including simulation+rendering, heterogeneous simulation, pointclouds/voxels visual input, and more. Simulation with rendering on ManiSkill3 can run 10-1000x faster with 2-3x less GPU memory usage than other platforms, achieving up to 30,000+ FPS in benchmarked environments due to minimal python/pytorch overhead in the system, simulation on the GPU, and the use of the SAPIEN parallel rendering system. Tasks that used to take hours to train can now take minutes. We further provide the most comprehensive range of GPU parallelized environments/tasks spanning 12 distinct domains including but not limited to mobile manipulation for tasks such as drawing, humanoids, and dextrous manipulation in realistic scenes designed by artists or real-world digital twins. In addition, millions of demonstration frames are provided from motion planning, RL, and teleoperation. ManiSkill3 also provides a comprehensive set of baselines that span popular RL and learning-from-demonstrations algorithms.
Abstract:Threat actor attribution is a crucial defense strategy for combating advanced persistent threats (APTs). Cyber threat intelligence (CTI), which involves analyzing multisource heterogeneous data from APTs, plays an important role in APT actor attribution. The current attribution methods extract features from different CTI perspectives and employ machine learning models to classify CTI reports according to their threat actors. However, these methods usually extract only one kind of feature and ignore heterogeneous information, especially the attributes and relations of indicators of compromise (IOCs), which form the core of CTI. To address these problems, we propose an APT actor attribution method based on multimodal and multilevel feature fusion (APT-MMF). First, we leverage a heterogeneous attributed graph to characterize APT reports and their IOC information. Then, we extract and fuse multimodal features, including attribute type features, natural language text features and topological relationship features, to construct comprehensive node representations. Furthermore, we design multilevel heterogeneous graph attention networks to learn the deep hidden features of APT report nodes; these networks integrate IOC type-level, metapath-based neighbor node-level, and metapath semantic-level attention. Utilizing multisource threat intelligence, we construct a heterogeneous attributed graph dataset for verification purposes. The experimental results show that our method not only outperforms the existing methods but also demonstrates its good interpretability for attribution analysis tasks.