Abstract:The misuse of AI imagery can have harmful societal effects, prompting the creation of detectors to combat issues like the spread of fake news. Existing methods can effectively detect images generated by seen generators, but it is challenging to detect those generated by unseen generators. They do not concentrate on amplifying the output discrepancy when detectors process real versus fake images. This results in a close output distribution of real and fake samples, increasing classification difficulty in detecting unseen generators. This paper addresses the unseen-generator detection problem by considering this task from the perspective of anomaly detection and proposes an adversarial teacher-student discrepancy-aware framework. Our method encourages smaller output discrepancies between the student and the teacher models for real images while aiming for larger discrepancies for fake images. We employ adversarial learning to train a feature augmenter, which promotes smaller discrepancies between teacher and student networks when the inputs are fake images. Our method has achieved state-of-the-art on public benchmarks, and the visualization results show that a large output discrepancy is maintained when faced with various types of generators.
Abstract:Face recognition systems have become increasingly vulnerable to security threats in recent years, prompting the use of Face Anti-spoofing (FAS) to protect against various types of attacks, such as phone unlocking, face payment, and self-service security inspection. While FAS has demonstrated its effectiveness in traditional settings, securing it in long-distance surveillance scenarios presents a significant challenge. These scenarios often feature low-quality face images, necessitating the modeling of data uncertainty to improve stability under extreme conditions. To address this issue, this work proposes Distributional Estimation (DisE), a method that converts traditional FAS point estimation to distributional estimation by modeling data uncertainty during training, including feature (mean) and uncertainty (variance). By adjusting the learning strength of clean and noisy samples for stability and accuracy, the learned uncertainty enhances DisE's performance. The method is evaluated on SuHiFiMask [1], a large-scale and challenging FAS dataset in surveillance scenarios. Results demonstrate that DisE achieves comparable performance on both ACER and AUC metrics.
Abstract:Out-of-distribution (OOD) detection is critical for preventing deep learning models from making incorrect predictions to ensure the safety of artificial intelligence systems. Especially in safety-critical applications such as medical diagnosis and autonomous driving, the cost of incorrect decisions is usually unbearable. However, neural networks often suffer from the overconfidence issue, making high confidence for OOD data which are never seen during training process and may be irrelevant to training data, namely in-distribution (ID) data. Determining the reliability of the prediction is still a difficult and challenging task. In this work, we propose Uncertainty-Estimation with Normalized Logits (UE-NL), a robust learning method for OOD detection, which has three main benefits. (1) Neural networks with UE-NL treat every ID sample equally by predicting the uncertainty score of input data and the uncertainty is added into softmax function to adjust the learning strength of easy and hard samples during training phase, making the model learn robustly and accurately. (2) UE-NL enforces a constant vector norm on the logits to decouple the effect of the increasing output norm from optimization process, which causes the overconfidence issue to some extent. (3) UE-NL provides a new metric, the magnitude of uncertainty score, to detect OOD data. Experiments demonstrate that UE-NL achieves top performance on common OOD benchmarks and is more robust to noisy ID data that may be misjudged as OOD data by other methods.
Abstract:Data uncertainty is commonly observed in the images for face recognition (FR). However, deep learning algorithms often make predictions with high confidence even for uncertain or irrelevant inputs. Intuitively, FR algorithms can benefit from both the estimation of uncertainty and the detection of out-of-distribution (OOD) samples. Taking a probabilistic view of the current classification model, the temperature scalar is exactly the scale of uncertainty noise implicitly added in the softmax function. Meanwhile, the uncertainty of images in a dataset should follow a prior distribution. Based on the observation, a unified framework for uncertainty modeling and FR, Random Temperature Scaling (RTS), is proposed to learn a reliable FR algorithm. The benefits of RTS are two-fold. (1) In the training phase, it can adjust the learning strength of clean and noisy samples for stability and accuracy. (2) In the test phase, it can provide a score of confidence to detect uncertain, low-quality and even OOD samples, without training on extra labels. Extensive experiments on FR benchmarks demonstrate that the magnitude of variance in RTS, which serves as an OOD detection metric, is closely related to the uncertainty of the input image. RTS can achieve top performance on both the FR and OOD detection tasks. Moreover, the model trained with RTS can perform robustly on datasets with noise. The proposed module is light-weight and only adds negligible computation cost to the model.