Abstract:Event-based cameras are sensors that simulate the human eye, offering advantages such as high-speed robustness and low power consumption. Established Deep Learning techniques have shown effectiveness in processing event data. Chimera is a Block-Based Neural Architecture Search (NAS) framework specifically designed for Event-Based Object Detection, aiming to create a systematic approach for adapting RGB-domain processing methods to the event domain. The Chimera design space is constructed from various macroblocks, including Attention blocks, Convolutions, State Space Models, and MLP-mixer-based architectures, which provide a valuable trade-off between local and global processing capabilities, as well as varying levels of complexity. The results on the PErson Detection in Robotics (PEDRo) dataset demonstrated performance levels comparable to leading state-of-the-art models, alongside an average parameter reduction of 1.6 times.
Abstract:Mental health disorders are increasingly prevalent worldwide, creating an urgent need for innovative tools to support early diagnosis and intervention. This study explores the potential of Large Language Models (LLMs) in multimodal mental health diagnostics, specifically for detecting depression and Post Traumatic Stress Disorder through text and audio modalities. Using the E-DAIC dataset, we compare text and audio modalities to investigate whether LLMs can perform equally well or better with audio inputs. We further examine the integration of both modalities to determine if this can enhance diagnostic accuracy, which generally results in improved performance metrics. Our analysis specifically utilizes custom-formulated metrics; Modal Superiority Score and Disagreement Resolvement Score to evaluate how combined modalities influence model performance. The Gemini 1.5 Pro model achieves the highest scores in binary depression classification when using the combined modality, with an F1 score of 0.67 and a Balanced Accuracy (BA) of 77.4%, assessed across the full dataset. These results represent an increase of 3.1% over its performance with the text modality and 2.7% over the audio modality, highlighting the effectiveness of integrating modalities to enhance diagnostic accuracy. Notably, all results are obtained in zero-shot inferring, highlighting the robustness of the models without requiring task-specific fine-tuning. To explore the impact of different configurations on model performance, we conduct binary, severity, and multiclass tasks using both zero-shot and few-shot prompts, examining the effects of prompt variations on performance. The results reveal that models such as Gemini 1.5 Pro in text and audio modalities, and GPT-4o mini in the text modality, often surpass other models in balanced accuracy and F1 scores across multiple tasks.
Abstract:The growing prevalence and complexity of mental health disorders present significant challenges for accurate diagnosis and treatment, particularly in understanding the interplay between co-occurring conditions. Mental health disorders, such as depression and Anxiety, often co-occur, yet current datasets derived from social media posts typically focus on single-disorder labels, limiting their utility in comprehensive diagnostic analyses. This paper addresses this critical gap by proposing a novel methodology for cleaning, sampling, labeling, and combining data to create versatile multi-label datasets. Our approach introduces a synthetic labeling technique to transform single-label datasets into multi-label annotations, capturing the complexity of overlapping mental health conditions. To achieve this, two single-label datasets are first merged into a foundational multi-label dataset, enabling realistic analyses of co-occurring diagnoses. We then design and evaluate various prompting strategies for large language models (LLMs), ranging from single-label predictions to unrestricted prompts capable of detecting any present disorders. After rigorously assessing multiple LLMs and prompt configurations, the optimal combinations are identified and applied to label six additional single-disorder datasets from RMHD. The result is SPAADE-DR, a robust, multi-label dataset encompassing diverse mental health conditions. This research demonstrates the transformative potential of LLM-driven synthetic labeling in advancing mental health diagnostics from social media data, paving the way for more nuanced, data-driven insights into mental health care.
Abstract:Recent research efforts focus on reducing the computational and memory overheads of Large Language Models (LLMs) to make them feasible on resource-constrained devices. Despite advancements in compression techniques, non-linear operators like Softmax and Layernorm remain bottlenecks due to their sensitivity to quantization. We propose SoftmAP, a software-hardware co-design methodology that implements an integer-only low-precision Softmax using In-Memory Compute (IMC) hardware. Our method achieves up to three orders of magnitude improvement in the energy-delay product compared to A100 and RTX3090 GPUs, making LLMs more deployable without compromising performance.
Abstract:Mixed-precision quantization works Neural Networks (NNs) are gaining traction for their efficient realization on the hardware leading to higher throughput and lower energy. In-Memory Computing (IMC) accelerator architectures are offered as alternatives to traditional architectures relying on a data-centric computational paradigm, diminishing the memory wall problem, and scoring high throughput and energy efficiency. These accelerators can support static fixed-precision but are not flexible to support mixed-precision NNs. In this paper, we present BF-IMNA, a bit fluid IMC accelerator for end-to-end Convolutional NN (CNN) inference that is capable of static and dynamic mixed-precision without any hardware reconfiguration overhead at run-time. At the heart of BF-IMNA are Associative Processors (APs), which are bit-serial word-parallel Single Instruction, Multiple Data (SIMD)-like engines. We report the performance of end-to-end inference of ImageNet on AlexNet, VGG16, and ResNet50 on BF-IMNA for different technologies (eNVM and NVM), mixed-precision configurations, and supply voltages. To demonstrate bit fluidity, we implement HAWQ-V3's per-layer mixed-precision configurations for ResNet18 on BF-IMNA using different latency budgets, and results reveal a trade-off between accuracy and Energy-Delay Product (EDP): On one hand, mixed-precision with a high latency constraint achieves the closest accuracy to fixed-precision INT8 and reports a high (worse) EDP compared to fixed-precision INT4. On the other hand, with a low latency constraint, BF-IMNA reports the closest EDP to fixed-precision INT4, with a higher degradation in accuracy compared to fixed-precision INT8. We also show that BF-IMNA with fixed-precision configuration still delivers performance that is comparable to current state-of-the-art accelerators: BF-IMNA achieves $20\%$ higher energy efficiency and $2\%$ higher throughput.
Abstract:Designing generalized in-memory computing (IMC) hardware that efficiently supports a variety of workloads requires extensive design space exploration, which is infeasible to perform manually. Optimizing hardware individually for each workload or solely for the largest workload often fails to yield the most efficient generalized solutions. To address this, we propose a joint hardware-workload optimization framework that identifies optimised IMC chip architecture parameters, enabling more efficient, workload-flexible hardware. We show that joint optimization achieves 36%, 36%, 20%, and 69% better energy-latency-area scores for VGG16, ResNet18, AlexNet, and MobileNetV3, respectively, compared to the separate architecture parameters search optimizing for a single largest workload. Additionally, we quantify the performance trade-offs and losses of the resulting generalized IMC hardware compared to workload-specific IMC designs.
Abstract:Object detection is crucial in various cutting-edge applications, such as autonomous vehicles and advanced robotics systems, primarily relying on data from conventional frame-based RGB sensors. However, these sensors often struggle with issues like motion blur and poor performance in challenging lighting conditions. In response to these challenges, event-based cameras have emerged as an innovative paradigm. These cameras, mimicking the human eye, demonstrate superior performance in environments with fast motion and extreme lighting conditions while consuming less power. This study introduces ReYOLOv8, an advanced object detection framework that enhances a leading frame-based detection system with spatiotemporal modeling capabilities. We implemented a low-latency, memory-efficient method for encoding event data to boost the system's performance. We also developed a novel data augmentation technique tailored to leverage the unique attributes of event data, thus improving detection accuracy. Our models outperformed all comparable approaches in the GEN1 dataset, focusing on automotive applications, achieving mean Average Precision (mAP) improvements of 5%, 2.8%, and 2.5% across nano, small, and medium scales, respectively.These enhancements were achieved while reducing the number of trainable parameters by an average of 4.43% and maintaining real-time processing speeds between 9.2ms and 15.5ms. On the PEDRo dataset, which targets robotics applications, our models showed mAP improvements ranging from 9% to 18%, with 14.5x and 3.8x smaller models and an average speed enhancement of 1.67x.
Abstract:X-ray and electron diffraction-based microscopy use bragg peak detection and ptychography to perform 3-D imaging at an atomic resolution. Typically, these techniques are implemented using computationally complex tasks such as a Psuedo-Voigt function or solving a complex inverse problem. Recently, the use of deep neural networks has improved the existing state-of-the-art approaches. However, the design and development of the neural network models depends on time and labor intensive tuning of the model by application experts. To that end, we propose a hyperparameter (HPS) and neural architecture search (NAS) approach to automate the design and optimization of the neural network models for model size, energy consumption and throughput. We demonstrate the improved performance of the auto-tuned models when compared to the manually tuned BraggNN and PtychoNN benchmark. We study and demonstrate the importance of the exploring the search space of tunable hyperparameters in enhancing the performance of bragg peak detection and ptychographic reconstruction. Our NAS and HPS of (1) BraggNN achieves a 31.03\% improvement in bragg peak detection accuracy with a 87.57\% reduction in model size, and (2) PtychoNN achieves a 16.77\% improvement in model accuracy and a 12.82\% reduction in model size when compared to the baseline PtychoNN model. When inferred on the Orin-AGX platform, the optimized Braggnn and Ptychonn models demonstrate a 10.51\% and 9.47\% reduction in inference latency and a 44.18\% and 15.34\% reduction in energy consumption when compared to their respective baselines, when inferred in the Orin-AGX edge platform.
Abstract:Automatic Speech Recognition systems have been shown to be vulnerable to adversarial attacks that manipulate the command executed on the device. Recent research has focused on exploring methods to create such attacks, however, some issues relating to Over-The-Air (OTA) attacks have not been properly addressed. In our work, we examine the needed properties of robust attacks compatible with the OTA model, and we design a method of generating attacks with arbitrary such desired properties, namely the invariance to synchronization, and the robustness to filtering: this allows a Denial-of-Service (DoS) attack against ASR systems. We achieve these characteristics by constructing attacks in a modified frequency domain through an inverse Fourier transform. We evaluate our method on standard keyword classification tasks and analyze it in OTA, and we analyze the properties of the cross-domain attacks to explain the efficiency of the approach.
Abstract:Deep neural networks have been proven to be highly effective tools in various domains, yet their computational and memory costs restrict them from being widely deployed on portable devices. The recent rapid increase of edge computing devices has led to an active search for techniques to address the above-mentioned limitations of machine learning frameworks. The quantization of artificial neural networks (ANNs), which converts the full-precision synaptic weights into low-bit versions, emerged as one of the solutions. At the same time, spiking neural networks (SNNs) have become an attractive alternative to conventional ANNs due to their temporal information processing capability, energy efficiency, and high biological plausibility. Despite being driven by the same motivation, the simultaneous utilization of both concepts has yet to be thoroughly studied. Therefore, this work aims to bridge the gap between recent progress in quantized neural networks and SNNs. It presents an extensive study on the performance of the quantization function, represented as a linear combination of sigmoid functions, exploited in low-bit weight quantization in SNNs. The presented quantization function demonstrates the state-of-the-art performance on four popular benchmarks, CIFAR10-DVS, DVS128 Gesture, N-Caltech101, and N-MNIST, for binary networks (64.05\%, 95.45\%, 68.71\%, and 99.43\% respectively) with small accuracy drops and up to 31$\times$ memory savings, which outperforms existing methods.