Abstract:Automatic Speech Recognition systems have been shown to be vulnerable to adversarial attacks that manipulate the command executed on the device. Recent research has focused on exploring methods to create such attacks, however, some issues relating to Over-The-Air (OTA) attacks have not been properly addressed. In our work, we examine the needed properties of robust attacks compatible with the OTA model, and we design a method of generating attacks with arbitrary such desired properties, namely the invariance to synchronization, and the robustness to filtering: this allows a Denial-of-Service (DoS) attack against ASR systems. We achieve these characteristics by constructing attacks in a modified frequency domain through an inverse Fourier transform. We evaluate our method on standard keyword classification tasks and analyze it in OTA, and we analyze the properties of the cross-domain attacks to explain the efficiency of the approach.
Abstract:Decision trees are considered one of the most powerful tools for data classification. Accelerating the decision tree search is crucial for on-the-edge applications that have limited power and latency budget. In this paper, we propose a Content Addressable Memory (CAM) Compiler for Decision Tree (DT) inference acceleration. We propose a novel "adaptive-precision" scheme that results in a compact implementation and enables an efficient bijective mapping to Ternary Content Addressable Memories while maintaining high inference accuracies. In addition, a Resistive-CAM (ReCAM) functional synthesizer is developed for mapping the decision tree to the ReCAM and performing functional simulations for energy, latency, and accuracy evaluations. We study the decision tree accuracy under hardware non-idealities including device defects, manufacturing variability, and input encoding noise. We test our framework on various DT datasets including \textit{Give Me Some Credit}, \textit{Titanic}, and \textit{COVID-19}. Our results reveal up to {42.4\%} energy savings and up to 17.8x better energy-delay-area product compared to the state-of-art hardware accelerators, and up to 333 million decisions per sec for the pipelined implementation.
Abstract:Quantum computers have enabled solving problems beyond the current computers' capabilities. However, this requires handling noise arising from unwanted interactions in these systems. Several protocols have been proposed to address efficient and accurate quantum noise profiling and mitigation. In this work, we propose a novel protocol that efficiently estimates the average output of a noisy quantum device to be used for quantum noise mitigation. The multi-qubit system average behavior is approximated as a special form of a Pauli Channel where Clifford gates are used to estimate the average output for circuits of different depths. The characterized Pauli channel error rates, and state preparation and measurement errors are then used to construct the outputs for different depths thereby eliminating the need for large simulations and enabling efficient mitigation. We demonstrate the efficiency of the proposed protocol on four IBM Q 5-qubit quantum devices. Our method demonstrates improved accuracy with efficient noise characterization. We report up to 88\% and 69\% improvement for the proposed approach compared to the unmitigated, and pure measurement error mitigation approaches, respectively.