Abstract:Integrated sensing and communication (ISAC) has emerged as a transformative paradigm, enabling situationally aware and perceptive next-generation wireless networks through the co-design of shared network resources. With the adoption of millimeter-wave (mmWave) and terahertz (THz) frequency bands, ultra-massive MIMO (UM-MIMO) systems and holographic surfaces unlock the potential of near-field (NF) propagation, characterized by spherical wavefronts that facilitate beam manipulation in both angular and range domains. This paper presents a unified approach to near-field beam-training and sensing, introducing a dual-purpose codebook design that employs discrete Fourier transform (DFT)-based codebooks for coarse estimation of sensing parameters and polar codebooks for parameter refinement. Leveraging these range and angle estimates, a customized low-complexity space-time adaptive processing (STAP) technique is proposed for NF-ISAC to detect slow-moving targets and efficiently mitigate clutter. The interplay between codebooks and NF-STAP framework offers three key advantages: reduced communication beam training overhead, improved estimation accuracy, and minimal STAP computational complexity. Simulation results show that the proposed framework can reduce STAP complexity by three orders of magnitude, validating efficacy, and highlighting the potential of the proposed approach to seamlessly integrate NF communication and sensing functionalities in future wireless networks.
Abstract:Event-based cameras are sensors that simulate the human eye, offering advantages such as high-speed robustness and low power consumption. Established Deep Learning techniques have shown effectiveness in processing event data. Chimera is a Block-Based Neural Architecture Search (NAS) framework specifically designed for Event-Based Object Detection, aiming to create a systematic approach for adapting RGB-domain processing methods to the event domain. The Chimera design space is constructed from various macroblocks, including Attention blocks, Convolutions, State Space Models, and MLP-mixer-based architectures, which provide a valuable trade-off between local and global processing capabilities, as well as varying levels of complexity. The results on the PErson Detection in Robotics (PEDRo) dataset demonstrated performance levels comparable to leading state-of-the-art models, alongside an average parameter reduction of 1.6 times.
Abstract:The transition to 6G networks promises unprecedented advancements in wireless communication, with increased data rates, ultra-low latency, and enhanced capacity. However, the complexity of managing and optimizing these next-generation networks presents significant challenges. The advent of large language models (LLMs) has revolutionized various domains by leveraging their sophisticated natural language understanding capabilities. However, the practical application of LLMs in wireless network orchestration and management remains largely unexplored. Existing literature predominantly offers visionary perspectives without concrete implementations, leaving a significant gap in the field. To address this gap, this paper presents NETORCHLLM, a wireless NETwork ORCHestrator LLM framework that uses LLMs to seamlessly orchestrate diverse wireless-specific models from wireless communication communities using their language understanding and generation capabilities. A comprehensive framework is introduced, demonstrating the practical viability of our approach and showcasing how LLMs can be effectively harnessed to optimize dense network operations, manage dynamic environments, and improve overall network performance. NETORCHLLM bridges the theoretical aspirations of prior research with practical, actionable solutions, paving the way for future advancements in integrating generative AI technologies within the wireless communications sector.
Abstract:Integrated sensing and communications (ISAC) has emerged as a means to efficiently utilize spectrum and thereby save cost and power. At the higher end of the spectrum, ISAC systems operate at wideband using large antenna arrays to meet the stringent demands for high-resolution sensing and enhanced communications capacity. On the other hand, the overall design should satisfy energy-efficiency and hardware constraints such as operating on low resolution components for a practical scenario. Therefore, this paper presents the design of Hybrid ANalog and Digital BeAmformers with Low resoLution (HANDBALL) digital-to-analog converters (DACs). We introduce a greedy-search-based approach to design the analog beamformers for multi-user multi-target ISAC scenario. Then, the quantization distortion is taken into account in order to design the baseband beamformer with low resolution DACs. We evaluated performance of the proposed HANDBALL technique in terms of both spectral efficiency and sensing beampattern, providing a satisfactory sensing and communication performance for both one-bit and few-bit designs.
Abstract:Mixed-precision quantization works Neural Networks (NNs) are gaining traction for their efficient realization on the hardware leading to higher throughput and lower energy. In-Memory Computing (IMC) accelerator architectures are offered as alternatives to traditional architectures relying on a data-centric computational paradigm, diminishing the memory wall problem, and scoring high throughput and energy efficiency. These accelerators can support static fixed-precision but are not flexible to support mixed-precision NNs. In this paper, we present BF-IMNA, a bit fluid IMC accelerator for end-to-end Convolutional NN (CNN) inference that is capable of static and dynamic mixed-precision without any hardware reconfiguration overhead at run-time. At the heart of BF-IMNA are Associative Processors (APs), which are bit-serial word-parallel Single Instruction, Multiple Data (SIMD)-like engines. We report the performance of end-to-end inference of ImageNet on AlexNet, VGG16, and ResNet50 on BF-IMNA for different technologies (eNVM and NVM), mixed-precision configurations, and supply voltages. To demonstrate bit fluidity, we implement HAWQ-V3's per-layer mixed-precision configurations for ResNet18 on BF-IMNA using different latency budgets, and results reveal a trade-off between accuracy and Energy-Delay Product (EDP): On one hand, mixed-precision with a high latency constraint achieves the closest accuracy to fixed-precision INT8 and reports a high (worse) EDP compared to fixed-precision INT4. On the other hand, with a low latency constraint, BF-IMNA reports the closest EDP to fixed-precision INT4, with a higher degradation in accuracy compared to fixed-precision INT8. We also show that BF-IMNA with fixed-precision configuration still delivers performance that is comparable to current state-of-the-art accelerators: BF-IMNA achieves $20\%$ higher energy efficiency and $2\%$ higher throughput.
Abstract:Object detection is crucial in various cutting-edge applications, such as autonomous vehicles and advanced robotics systems, primarily relying on data from conventional frame-based RGB sensors. However, these sensors often struggle with issues like motion blur and poor performance in challenging lighting conditions. In response to these challenges, event-based cameras have emerged as an innovative paradigm. These cameras, mimicking the human eye, demonstrate superior performance in environments with fast motion and extreme lighting conditions while consuming less power. This study introduces ReYOLOv8, an advanced object detection framework that enhances a leading frame-based detection system with spatiotemporal modeling capabilities. We implemented a low-latency, memory-efficient method for encoding event data to boost the system's performance. We also developed a novel data augmentation technique tailored to leverage the unique attributes of event data, thus improving detection accuracy. Our models outperformed all comparable approaches in the GEN1 dataset, focusing on automotive applications, achieving mean Average Precision (mAP) improvements of 5%, 2.8%, and 2.5% across nano, small, and medium scales, respectively.These enhancements were achieved while reducing the number of trainable parameters by an average of 4.43% and maintaining real-time processing speeds between 9.2ms and 15.5ms. On the PEDRo dataset, which targets robotics applications, our models showed mAP improvements ranging from 9% to 18%, with 14.5x and 3.8x smaller models and an average speed enhancement of 1.67x.
Abstract:Integrated sensing and communications (ISAC) has emerged as a means to efficiently utilize spectrum and thereby save cost and power. At the higher end of the spectrum, ISAC systems operate at wideband using large antenna arrays to meet the stringent demands for high-resolution sensing and enhanced communications capacity. However, the wideband implementation entails beam-squint, that is, deviations in the generated beam directions because of the narrowband assumption in the analog components. This causes significant degradation in the communications capacity, target detection, and parameter estimation. This article presents the design challenges caused by beam-squint and its mitigation in ISAC systems. In this context, we also discuss several ISAC design perspectives including far-/near-field beamforming, channel/direction estimation, sparse array design, and index modulation. There are also several research opportunities in waveform design, beam training, and array processing to adequately address beam-squint in ISAC.
Abstract:A joint design of both sensing and communication can lead to substantial enhancement for both subsystems in terms of size, cost as well as spectrum and hardware efficiency. In the last decade, integrated sensing and communications (ISAC) has emerged as a means to efficiently utilize the spectrum on a single and shared hardware platform. Recent studies focused on developing multi-function approaches to share the spectrum between radar sensing and communications. Index modulation (IM) is one particular approach to incorporate information-bearing communication symbols into the emitted radar waveforms. While IM has been well investigated in communications-only systems, the implementation adoption of IM concept in ISAC has recently attracted researchers to achieve improved energy/spectral efficiency while maintaining satisfactory radar sensing performance. This article focuses on recent studies on IM-ISAC, and presents in detail the analytical background and relevance of the major IM-ISAC applications.
Abstract:Terahertz (THz) band is envisioned for the future sixth generation wireless systems thanks to its abundant bandwidth and very narrow beamwidth. These features are one of the key enabling factors for high resolution sensing with milli-degree level direction-of-arrival (DOA) estimation. Therefore, this paper investigates the DOA estimation problem in THz systems in the presence of two major error sources: 1) gain-phase mismatches, which occur due to the deviations in the radio-frequency circuitry; 2) beam-squint, which is caused because of the deviations in the generated beams at different subcarriers due to ultra-wide bandwidth. An auto-calibration approach, namely NoisE subspAce correcTion technique for MUltiple SIgnal Classification (NEAT-MUSIC), is proposed based on the correction of the noise subspace for accurate DOA estimation in the presence of gain-phase mismatches and beam-squint. To gauge the performance of the proposed approach, the Cramer-Rao bounds are also derived. Numerical results show the effectiveness of the proposed approach.
Abstract:Terahertz (THz) band communications and integrated sensing and communications (ISAC) are two main facets of the sixth generation wireless networks. In order to compensate the severe attenuation, the THz wireless systems employ large arrays, wherein the near-field beam-squint severely degrades the beamforming accuracy. Contrary to prior works that examine only either narrowband ISAC beamforming or far-field models, we introduce an alternating optimization technique for hybrid beamforming design in near-field THz-ISAC scenario. We also propose an efficient approach to compensate near-field beam-squint via baseband beamformers. Via numerical simulations, we show that the proposed approach achieves satisfactory spectral efficiency performance while accurately estimating the near-field beamformers and mitigating the beam-squint without additional hardware components.