Abstract:A polarization camera can capture four polarized images with different polarizer angles in a single shot, which is useful in polarization-based vision applications since the degree of polarization (DoP) and the angle of polarization (AoP) can be directly computed from the captured polarized images. However, since the on-chip micro-polarizers block part of the light so that the sensor often requires a longer exposure time, the captured polarized images are prone to motion blur caused by camera shakes, leading to noticeable degradation in the computed DoP and AoP. Deblurring methods for conventional images often show degenerated performance when handling the polarized images since they only focus on deblurring without considering the polarization constrains. In this paper, we propose a polarized image deblurring pipeline to solve the problem in a polarization-aware manner by adopting a divide-and-conquer strategy to explicitly decompose the problem into two less ill-posed sub-problems, and design a two-stage neural network to handle the two sub-problems respectively. Experimental results show that our method achieves state-of-the-art performance on both synthetic and real-world images, and can improve the performance of polarization-based vision applications such as image dehazing and reflection removal.
Abstract:Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed. Complementing the rich texture and color perception of traditional image frames, the hybrid camera system of event and frame-based cameras enables high-performance imaging. With the assistance of event cameras, high-quality image/video enhancement methods make it possible to break the limits of traditional frame-based cameras, especially exposure time, resolution, dynamic range, and frame rate limits. This paper focuses on five event-aided image and video enhancement tasks (i.e., event-based video reconstruction, event-aided high frame rate video reconstruction, image deblurring, image super-resolution, and high dynamic range image reconstruction), provides an analysis of the effects of different event properties, a real-captured and ground truth labeled benchmark dataset, a unified benchmarking of state-of-the-art methods, and an evaluation for two mainstream event simulators. In detail, this paper collects a real-captured evaluation dataset EventAid for five event-aided image/video enhancement tasks, by using "Event-RGB" multi-camera hybrid system, taking into account scene diversity and spatiotemporal synchronization. We further perform quantitative and visual comparisons for state-of-the-art algorithms, provide a controlled experiment to analyze the performance limit of event-aided image deblurring methods, and discuss open problems to inspire future research.