Abstract:This paper presents a novel approach to inpainting 3D regions of a scene, given masked multi-view images, by distilling a 2D diffusion model into a learned 3D scene representation (e.g. a NeRF). Unlike 3D generative methods that explicitly condition the diffusion model on camera pose or multi-view information, our diffusion model is conditioned only on a single masked 2D image. Nevertheless, we show that this 2D diffusion model can still serve as a generative prior in a 3D multi-view reconstruction problem where we optimize a NeRF using a combination of score distillation sampling and NeRF reconstruction losses. Predicted depth is used as additional supervision to encourage accurate geometry. We compare our approach to 3D inpainting methods that focus on object removal. Because our method can generate content to fill any 3D masked region, we additionally demonstrate 3D object completion, 3D object replacement, and 3D scene completion.
Abstract:We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.