Abstract:We introduce Text2Immersion, an elegant method for producing high-quality 3D immersive scenes from text prompts. Our proposed pipeline initiates by progressively generating a Gaussian cloud using pre-trained 2D diffusion and depth estimation models. This is followed by a refining stage on the Gaussian cloud, interpolating and refining it to enhance the details of the generated scene. Distinct from prevalent methods that focus on single object or indoor scenes, or employ zoom-out trajectories, our approach generates diverse scenes with various objects, even extending to the creation of imaginary scenes. Consequently, Text2Immersion can have wide-ranging implications for various applications such as virtual reality, game development, and automated content creation. Extensive evaluations demonstrate that our system surpasses other methods in rendering quality and diversity, further progressing towards text-driven 3D scene generation. We will make the source code publicly accessible at the project page.
Abstract:The Gauss-Manin connection of a family of hypersurfaces governs the change of the period matrix along the family. This connection can be complicated even when the equations defining the family look simple. When this is the case, it is computationally expensive to compute the period matrices of varieties in the family via homotopy continuation. We train neural networks that can quickly and reliably guess the complexity of the Gauss-Manin connection of a pencil of hypersurfaces. As an application, we compute the periods of 96% of smooth quartic surfaces in projective 3-space whose defining equation is a sum of five monomials; from the periods of these quartic surfaces, we extract their Picard numbers and the endomorphism fields of their transcendental lattices.
Abstract:In this paper, we present an algorithm to automatically detect meaningful modes in a histogram. The proposed method is based on the behavior of local minima in a scale-space representation. We show that the detection of such meaningful modes is equivalent in a two classes clustering problem on the length of minima scale-space curves. The algorithm is easy to implement, fast, and does not require any parameters. We present several results on histogram and spectrum segmentation, grayscale image segmentation and color image reduction.