Abstract:An oblivious subspace embedding is a random $m\times n$ matrix $\Pi$ such that, for any $d$-dimensional subspace, with high probability $\Pi$ preserves the norms of all vectors in that subspace within a $1\pm\epsilon$ factor. In this work, we give an oblivious subspace embedding with the optimal dimension $m=\Theta(d/\epsilon^2)$ that has a near-optimal sparsity of $\tilde O(1/\epsilon)$ non-zero entries per column of $\Pi$. This is the first result to nearly match the conjecture of Nelson and Nguyen [FOCS 2013] in terms of the best sparsity attainable by an optimal oblivious subspace embedding, improving on a prior bound of $\tilde O(1/\epsilon^6)$ non-zeros per column [Chenakkod et al., STOC 2024]. We further extend our approach to the non-oblivious setting, proposing a new family of Leverage Score Sparsified embeddings with Independent Columns, which yield faster runtimes for matrix approximation and regression tasks. In our analysis, we develop a new method which uses a decoupling argument together with the cumulant method for bounding the edge universality error of isotropic random matrices. To achieve near-optimal sparsity, we combine this general-purpose approach with new traces inequalities that leverage the specific structure of our subspace embedding construction.
Abstract:Large matrices arise in many machine learning and data analysis applications, including as representations of datasets, graphs, model weights, and first and second-order derivatives. Randomized Numerical Linear Algebra (RandNLA) is an area which uses randomness to develop improved algorithms for ubiquitous matrix problems. The area has reached a certain level of maturity; but recent hardware trends, efforts to incorporate RandNLA algorithms into core numerical libraries, and advances in machine learning, statistics, and random matrix theory, have lead to new theoretical and practical challenges. This article provides a self-contained overview of RandNLA, in light of these developments.
Abstract:Stochastic second-order methods achieve fast local convergence in strongly convex optimization by using noisy Hessian estimates to precondition the gradient. However, these methods typically reach superlinear convergence only when the stochastic Hessian noise diminishes, increasing per-iteration costs over time. Recent work in [arXiv:2204.09266] addressed this with a Hessian averaging scheme that achieves superlinear convergence without higher per-iteration costs. Nonetheless, the method has slow global convergence, requiring up to $\tilde{O}(\kappa^2)$ iterations to reach the superlinear rate of $\tilde{O}((1/t)^{t/2})$, where $\kappa$ is the problem's condition number. In this paper, we propose a novel stochastic Newton proximal extragradient method that improves these bounds, achieving a faster global linear rate and reaching the same fast superlinear rate in $\tilde{O}(\kappa)$ iterations. We accomplish this by extending the Hybrid Proximal Extragradient (HPE) framework, achieving fast global and local convergence rates for strongly convex functions with access to a noisy Hessian oracle.
Abstract:We present a new class of preconditioned iterative methods for solving linear systems of the form $Ax = b$. Our methods are based on constructing a low-rank Nystr\"om approximation to $A$ using sparse random sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of $A$, which improves as the rank of the Nystr\"om approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any $n\times n$ linear system that is well-conditioned except for $k$ outlying large singular values in $\tilde{O}(n^{2.065} + k^\omega)$ time, improving on a recent result of [Derezi\'nski, Yang, STOC 2024] for all $k \gtrsim n^{0.78}$. 2. We give the first $\tilde{O}(n^2 + {d_\lambda}^{\omega}$) time algorithm for solving a regularized linear system $(A + \lambda I)x = b$, where $A$ is positive semidefinite with effective dimension $d_\lambda$. This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten $p$-norms and other matrix norms. For example, for the Schatten 1 (nuclear) norm, we give an algorithm that runs in $\tilde{O}(n^{2.11})$ time, improving on an $\tilde{O}(n^{2.18})$ method of [Musco et al., ITCS 2018]. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching.
Abstract:While effective in practice, iterative methods for solving large systems of linear equations can be significantly affected by problem-dependent condition number quantities. This makes characterizing their time complexity challenging, particularly when we wish to make comparisons between deterministic and stochastic methods, that may or may not rely on preconditioning and/or fast matrix multiplication. In this work, we consider a fine-grained notion of complexity for iterative linear solvers which we call the spectral tail condition number, $\kappa_\ell$, defined as the ratio between the $\ell$th largest and the smallest singular value of the matrix representing the system. Concretely, we prove the following main algorithmic result: Given an $n\times n$ matrix $A$ and a vector $b$, we can find $\tilde{x}$ such that $\|A\tilde{x}-b\|\leq\epsilon\|b\|$ in time $\tilde{O}(\kappa_\ell\cdot n^2\log 1/\epsilon)$ for any $\ell = O(n^{\frac1{\omega-1}})=O(n^{0.729})$, where $\omega \approx 2.372$ is the current fast matrix multiplication exponent. This guarantee is achieved by Sketch-and-Project with Nesterov's acceleration. Some of the implications of our result, and of the use of $\kappa_\ell$, include direct improvement over a fine-grained analysis of the Conjugate Gradient method, suggesting a stronger separation between deterministic and stochastic iterative solvers; and relating the complexity of iterative solvers to the ongoing algorithmic advances in fast matrix multiplication, since the bound on $\ell$ improves with $\omega$. Our main technical contributions are new sharp characterizations for the first and second moments of the random projection matrix that commonly arises in sketching algorithms, building on a combination of techniques from combinatorial sampling via determinantal point processes and Gaussian universality results from random matrix theory.
Abstract:Matrix sketching is a powerful tool for reducing the size of large data matrices. Yet there are fundamental limitations to this size reduction when we want to recover an accurate estimator for a task such as least square regression. We show that these limitations can be circumvented in the distributed setting by designing sketching methods that minimize the bias of the estimator, rather than its error. In particular, we give a sparse sketching method running in optimal space and current matrix multiplication time, which recovers a nearly-unbiased least squares estimator using two passes over the data. This leads to new communication-efficient distributed averaging algorithms for least squares and related tasks, which directly improve on several prior approaches. Our key novelty is a new bias analysis for sketched least squares, giving a sharp characterization of its dependence on the sketch sparsity. The techniques include new higher-moment restricted Bai-Silverstein inequalities, which are of independent interest to the non-asymptotic analysis of deterministic equivalents for random matrices that arise from sketching.
Abstract:We show that, for finite-sum minimization problems, incorporating partial second-order information of the objective function can dramatically improve the robustness to mini-batch size of variance-reduced stochastic gradient methods, making them more scalable while retaining their benefits over traditional Newton-type approaches. We demonstrate this phenomenon on a prototypical stochastic second-order algorithm, called Mini-Batch Stochastic Variance-Reduced Newton ($\texttt{Mb-SVRN}$), which combines variance-reduced gradient estimates with access to an approximate Hessian oracle. In particular, we show that when the data size $n$ is sufficiently large, i.e., $n\gg \alpha^2\kappa$, where $\kappa$ is the condition number and $\alpha$ is the Hessian approximation factor, then $\texttt{Mb-SVRN}$ achieves a fast linear convergence rate that is independent of the gradient mini-batch size $b$, as long $b$ is in the range between $1$ and $b_{\max}=O(n/(\alpha \log n))$. Only after increasing the mini-batch size past this critical point $b_{\max}$, the method begins to transition into a standard Newton-type algorithm which is much more sensitive to the Hessian approximation quality. We demonstrate this phenomenon empirically on benchmark optimization tasks showing that, after tuning the step size, the convergence rate of $\texttt{Mb-SVRN}$ remains fast for a wide range of mini-batch sizes, and the dependence of the phase transition point $b_{\max}$ on the Hessian approximation factor $\alpha$ aligns with our theoretical predictions.
Abstract:As a variant of Graph Neural Networks (GNNs), Unfolded GNNs offer enhanced interpretability and flexibility over traditional designs. Nevertheless, they still suffer from scalability challenges when it comes to the training cost. Although many methods have been proposed to address the scalability issues, they mostly focus on per-iteration efficiency, without worst-case convergence guarantees. Moreover, those methods typically add components to or modify the original model, thus possibly breaking the interpretability of Unfolded GNNs. In this paper, we propose HERTA: a High-Efficiency and Rigorous Training Algorithm for Unfolded GNNs that accelerates the whole training process, achieving a nearly-linear time worst-case training guarantee. Crucially, HERTA converges to the optimum of the original model, thus preserving the interpretability of Unfolded GNNs. Additionally, as a byproduct of HERTA, we propose a new spectral sparsification method applicable to normalized and regularized graph Laplacians that ensures tighter bounds for our algorithm than existing spectral sparsifiers do. Experiments on real-world datasets verify the superiority of HERTA as well as its adaptability to various loss functions and optimizers.
Abstract:We give a stochastic optimization algorithm that solves a dense $n\times n$ real-valued linear system $Ax=b$, returning $\tilde x$ such that $\|A\tilde x-b\|\leq \epsilon\|b\|$ in time: $$\tilde O((n^2+nk^{\omega-1})\log1/\epsilon),$$ where $k$ is the number of singular values of $A$ larger than $O(1)$ times its smallest positive singular value, $\omega < 2.372$ is the matrix multiplication exponent, and $\tilde O$ hides a poly-logarithmic in $n$ factor. When $k=O(n^{1-\theta})$ (namely, $A$ has a flat-tailed spectrum, e.g., due to noisy data or regularization), this improves on both the cost of solving the system directly, as well as on the cost of preconditioning an iterative method such as conjugate gradient. In particular, our algorithm has an $\tilde O(n^2)$ runtime when $k=O(n^{0.729})$. We further adapt this result to sparse positive semidefinite matrices and least squares regression. Our main algorithm can be viewed as a randomized block coordinate descent method, where the key challenge is simultaneously ensuring good convergence and fast per-iteration time. In our analysis, we use theory of majorization for elementary symmetric polynomials to establish a sharp convergence guarantee when coordinate blocks are sampled using a determinantal point process. We then use a Markov chain coupling argument to show that similar convergence can be attained with a cheaper sampling scheme, and accelerate the block coordinate descent update via matrix sketching.
Abstract:A random $m\times n$ matrix $S$ is an oblivious subspace embedding (OSE) with parameters $\epsilon>0$, $\delta\in(0,1/3)$ and $d\leq m\leq n$, if for any $d$-dimensional subspace $W\subseteq R^n$, $P\big(\,\forall_{x\in W}\ (1+\epsilon)^{-1}\|x\|\leq\|Sx\|\leq (1+\epsilon)\|x\|\,\big)\geq 1-\delta.$ It is known that the embedding dimension of an OSE must satisfy $m\geq d$, and for any $\theta > 0$, a Gaussian embedding matrix with $m\geq (1+\theta) d$ is an OSE with $\epsilon = O_\theta(1)$. However, such optimal embedding dimension is not known for other embeddings. Of particular interest are sparse OSEs, having $s\ll m$ non-zeros per column, with applications to problems such as least squares regression and low-rank approximation. We show that, given any $\theta > 0$, an $m\times n$ random matrix $S$ with $m\geq (1+\theta)d$ consisting of randomly sparsified $\pm1/\sqrt s$ entries and having $s= O(\log^4(d))$ non-zeros per column, is an oblivious subspace embedding with $\epsilon = O_{\theta}(1)$. Our result addresses the main open question posed by Nelson and Nguyen (FOCS 2013), who conjectured that sparse OSEs can achieve $m=O(d)$ embedding dimension, and it improves on $m=O(d\log(d))$ shown by Cohen (SODA 2016). We use this to construct the first oblivious subspace embedding with $O(d)$ embedding dimension that can be applied faster than current matrix multiplication time, and to obtain an optimal single-pass algorithm for least squares regression. We further extend our results to construct even sparser non-oblivious embeddings, leading to the first subspace embedding with low distortion $\epsilon=o(1)$ and optimal embedding dimension $m=O(d/\epsilon^2)$ that can be applied in current matrix multiplication time.