Institute of Mathematics of the Romanian Academy, University "Politehnica" of Bucharest
Abstract:Solving fish segmentation in underwater videos, a real-world problem of great practical value in marine and aquaculture industry, is a challenging task due to the difficulty of the filming environment, poor visibility and limited existing annotated underwater fish data. In order to overcome these obstacles, we introduce a novel two stage unsupervised segmentation approach that requires no human annotations and combines artificially created and real images. Our method generates challenging synthetic training data, by placing virtual fish in real-world underwater habitats, after performing fish transformations such as Thin Plate Spline shape warping and color Histogram Matching, which realistically integrate synthetic fish into the backgrounds, making the generated images increasingly closer to the real world data with every stage of our approach. While we validate our unsupervised method on the popular DeepFish dataset, obtaining a performance close to a fully-supervised SoTA model, we further show its effectiveness on the specific case of salmon segmentation in underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature (30 GB). Moreover, on both datasets we prove the capability of our approach to boost the performance of the fully-supervised SoTA model.
Abstract:Generating novel views from recorded videos is crucial for enabling autonomous UAV navigation. Recent advancements in neural rendering have facilitated the rapid development of methods capable of rendering new trajectories. However, these methods often fail to generalize well to regions far from the training data without an optimized flight path, leading to suboptimal reconstructions. We propose a self-supervised cyclic neural-analytic pipeline that combines high-quality neural rendering outputs with precise geometric insights from analytical methods. Our solution improves RGB and mesh reconstructions for novel view synthesis, especially in undersampled areas and regions that are completely different from the training dataset. We use an effective transformer-based architecture for image reconstruction to refine and adapt the synthesis process, enabling effective handling of novel, unseen poses without relying on extensive labeled datasets. Our findings demonstrate substantial improvements in rendering views of novel and also 3D reconstruction, which to the best of our knowledge is a first, setting a new standard for autonomous navigation in complex outdoor environments.
Abstract:In the current era of Machine Learning, Transformers have become the de facto approach across a variety of domains, such as computer vision and natural language processing. Transformer-based solutions are the backbone of current state-of-the-art methods for language generation, image and video classification, segmentation, action and object recognition, among many others. Interestingly enough, while these state-of-the-art methods produce impressive results in their respective domains, the problem of understanding the relationship between vision and language is still beyond our reach. In this work, we propose a common ground between vision and language based on events in space and time in an explainable and programmatic way, to connect learning-based vision and language state of the art models and provide a solution to the long standing problem of describing videos in natural language. We validate that our algorithmic approach is able to generate coherent, rich and relevant textual descriptions on videos collected from a variety of datasets, using both standard metrics (e.g. Bleu, ROUGE) and the modern LLM-as-a-Jury approach.
Abstract:Pulmonary Embolisms (PE) are a leading cause of cardiovascular death. Computed tomographic pulmonary angiography (CTPA) stands as the gold standard for diagnosing pulmonary embolisms (PE) and there has been a lot of interest in developing AI-based models for assisting in PE diagnosis. Performance of these algorithms has been hindered by the scarcity of annotated data, especially those with fine-grained delineation of the thromboembolic burden. In this paper we attempt to address this issue by introducing a weakly supervised learning pipeline, that leverages model explainability to generate fine-grained (pixel level) masks for embolisms starting from more coarse-grained (binary, image level) PE annotations. Furthermore, we show that training models using the automatically generated pixel annotations yields good PE localization performance. We demonstrate the effectiveness of our pipeline on the large-scale, multi-center RSPECT augmented dataset for PE detection and localization.
Abstract:In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages.
Abstract:In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English. Hence, their performance in English greatly exceeds their performance in other languages. This document presents our approach to training and evaluating the first foundational and chat LLM specialized for Romanian.
Abstract:There is an increasing number of real-world problems in computer vision and machine learning requiring to take into consideration multiple interpretation layers (modalities or views) of the world and learn how they relate to each other. For example, in the case of Earth Observations from satellite data, it is important to be able to predict one observation layer (e.g. vegetation index) from other layers (e.g. water vapor, snow cover, temperature etc), in order to best understand how the Earth System functions and also be able to reliably predict information for one layer when the data is missing (e.g. due to measurement failure or error).
Abstract:Face-to-face communication modeling in computer vision is an area of research focusing on developing algorithms that can recognize and analyze non-verbal cues and behaviors during face-to-face interactions. We propose an alternative to text chats for Human-AI interaction, based on non-verbal visual communication only, using facial expressions and head movements that mirror, but also improvise over the human user, to efficiently engage with the users, and capture their attention in a low-cost and real-time fashion. Our goal is to track and analyze facial expressions, and other non-verbal cues in real-time, and use this information to build models that can predict and understand human behavior. We offer three different complementary approaches, based on retrieval, statistical, and deep learning techniques. We provide human as well as automatic evaluations and discuss the advantages and disadvantages of each direction.
Abstract:There are many ways of interpreting the world and they are highly interdependent. We exploit such complex dependencies and introduce a powerful multi-task hypergraph, in which every node is a task and different paths through the hypergraph reaching a given task become unsupervised teachers, by forming ensembles that learn to generate reliable pseudolabels for that task. Each hyperedge is part of an ensemble teacher for a given task and it is also a student of the self-supervised hypergraph system. We apply our model to one of the most important problems of our times, that of Earth Observation, which is highly multi-task and it often suffers from missing ground-truth data. By performing extensive experiments on the NASA NEO Dataset, spanning a period of 22 years, we demonstrate the value of our multi-task semi-supervised approach, by consistent improvements over strong baselines and recent work. We also show that the hypergraph can adapt unsupervised to gradual data distribution shifts and reliably recover, through its multi-task self-supervision process, the missing data for several observational layers for up to seven years.
Abstract:We present a method for learning multiple scene representations given a small labeled set, by exploiting the relationships between such representations in the form of a multi-task hypergraph. We also show how we can use the hypergraph to improve a powerful pretrained VisTransformer model without any additional labeled data. In our hypergraph, each node is an interpretation layer (e.g., depth or segmentation) of the scene. Within each hyperedge, one or several input nodes predict the layer at the output node. Thus, each node could be an input node in some hyperedges and an output node in others. In this way, multiple paths can reach the same node, to form ensembles from which we obtain robust pseudolabels, which allow self-supervised learning in the hypergraph. We test different ensemble models and different types of hyperedges and show superior performance to other multi-task graph models in the field. We also introduce Dronescapes, a large video dataset captured with UAVs in different complex real-world scenes, with multiple representations, suitable for multi-task learning.