Abstract:We contrast high effectiveness of state of the art deep learning architectures designed for general audio classification tasks, refined for respiratory insufficiency (RI) detection and blood oxygen saturation (SpO2) estimation and classification through automated audio analysis. Recently, multiple deep learning architectures have been proposed to detect RI in COVID patients through audio analysis, achieving accuracy above 95% and F1-score above 0.93. RI is a condition associated with low SpO2 levels, commonly defined as the threshold SpO2 <92%. While SpO2 serves as a crucial determinant of RI, a medical doctor's diagnosis typically relies on multiple factors. These include respiratory frequency, heart rate, SpO2 levels, among others. Here we study pretrained audio neural networks (CNN6, CNN10 and CNN14) and the Masked Autoencoder (Audio-MAE) for RI detection, where these models achieve near perfect accuracy, surpassing previous results. Yet, for the regression task of estimating SpO2 levels, the models achieve root mean square error values exceeding the accepted clinical range of 3.5% for finger oximeters. Additionally, Pearson correlation coefficients fail to surpass 0.3. As deep learning models perform better in classification than regression, we transform SpO2-regression into a SpO2-threshold binary classification problem, with a threshold of 92%. However, this task still yields an F1-score below 0.65. Thus, audio analysis offers valuable insights into a patient's RI status, but does not provide accurate information about actual SpO2 levels, indicating a separation of domains in which voice and speech biomarkers may and may not be useful in medical diagnostics under current technologies.
Abstract:This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved $96.5\%$ accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.
Abstract:An acoustic model, trained on a significant amount of unlabeled data, consists of a self-supervised learned speech representation useful for solving downstream tasks, perhaps after a fine-tuning of the model in the respective downstream task. In this work, we build an acoustic model of Brazilian Portuguese Speech through a Transformer neural network. This model was pretrained on more than $800$ hours of Brazilian Portuguese Speech, using a combination of pretraining techniques. Using a labeled dataset collected for the detection of respiratory insufficiency in Brazilian Portuguese speakers, we fine-tune the pretrained Transformer neural network on the following tasks: respiratory insufficiency detection, gender recognition and age group classification. We compare the performance of pretrained Transformers on these tasks with that of Transformers without previous pretraining, noting a significant improvement. In particular, the performance of respiratory insufficiency detection obtains the best reported results so far, indicating this kind of acoustic model as a promising tool for speech-as-biomarker approach. Moreover, the performance of gender recognition is comparable to the state of the art models in English.
Abstract:The goal of speech emotion recognition (SER) is to identify the emotional aspects of speech. The SER challenge for Brazilian Portuguese speech was proposed with short snippets of Portuguese which are classified as neutral, non-neutral female and non-neutral male according to paralinguistic elements (laughing, crying, etc). This dataset contains about $50$ minutes of Brazilian Portuguese speech. As the dataset leans on the small side, we investigate whether a combination of transfer learning and data augmentation techniques can produce positive results. Thus, by combining a data augmentation technique called SpecAugment, with the use of Pretrained Audio Neural Networks (PANNs) for transfer learning we are able to obtain interesting results. The PANNs (CNN6, CNN10 and CNN14) are pretrained on a large dataset called AudioSet containing more than $5000$ hours of audio. They were finetuned on the SER dataset and the best performing model (CNN10) on the validation set was submitted to the challenge, achieving an $F1$ score of $0.73$ up from $0.54$ from the baselines provided by the challenge. Moreover, we also tested the use of Transformer neural architecture, pretrained on about $600$ hours of Brazilian Portuguese audio data. Transformers, as well as more complex models of PANNs (CNN14), fail to generalize to the test set in the SER dataset and do not beat the baseline. Considering the limitation of the dataset sizes, currently the best approach for SER is using PANNs (specifically, CNN6 and CNN10).
Abstract:This work explores speech as a biomarker and investigates the detection of respiratory insufficiency (RI) by analyzing speech samples. Previous work \cite{spira2021} constructed a dataset of respiratory insufficiency COVID-19 patient utterances and analyzed it by means of a convolutional neural network achieving an accuracy of $87.04\%$, validating the hypothesis that one can detect RI through speech. Here, we study how Transformer neural network architectures can improve the performance on RI detection. This approach enables construction of an acoustic model. By choosing the correct pretraining technique, we generate a self-supervised acoustic model, leading to improved performance ($96.53\%$) of Transformers for RI detection.
Abstract:Multi-agent consensus problems can often be seen as a sequence of autonomous and independent local choices between a finite set of decision options, with each local choice undertaken simultaneously, and with a shared goal of achieving a global consensus state. Being able to estimate probabilities for the different outcomes and to predict how long it takes for a consensus to be formed, if ever, are core issues for such protocols. Little attention has been given to protocols in which agents can remember past or outdated states. In this paper, we propose a framework to study what we call \emph{memory consensus protocol}. We show that the employment of memory allows such processes to always converge, as well as, in some scenarios, such as cycles, converge faster. We provide a theoretical analysis of the probability of each option eventually winning such processes based on the initial opinions expressed by agents. Further, we perform experiments to investigate network topologies in which agents benefit from memory on the expected time needed for consensus.
Abstract:Evolutionary Strategies (ES) are known to be an effective black-box optimization technique for deep neural networks when the true gradients cannot be computed, such as in Reinforcement Learning. We continue a recent line of research that uses surrogate gradients to improve the gradient estimation of ES. We propose a novel method to optimally incorporate surrogate gradient information. Our approach, unlike previous work, needs no information about the quality of the surrogate gradients and is always guaranteed to find a descent direction that is better than the surrogate gradient. This allows to iteratively use the previous gradient estimate as surrogate gradient for the current search point. We theoretically prove that this yields fast convergence to the true gradient for linear functions and show under simplifying assumptions that it significantly improves gradient estimates for general functions. Finally, we evaluate our approach empirically on MNIST and reinforcement learning tasks and show that it considerably improves the gradient estimation of ES at no extra computational cost.
Abstract:One of the central goals of Recurrent Neural Networks (RNNs) is to learn long-term dependencies in sequential data. Nevertheless, the most popular training method, Truncated Backpropagation through Time (TBPTT), categorically forbids learning dependencies beyond the truncation horizon. In contrast, the online training algorithm Real Time Recurrent Learning (RTRL) provides untruncated gradients, with the disadvantage of impractically large computational costs. Recently published approaches reduce these costs by providing noisy approximations of RTRL. We present a new approximation algorithm of RTRL, Optimal Kronecker-Sum Approximation (OK). We prove that OK is optimal for a class of approximations of RTRL, which includes all approaches published so far. Additionally, we show that OK has empirically negligible noise: Unlike previous algorithms it matches TBPTT in a real world task (character-level Penn TreeBank) and can exploit online parameter updates to outperform TBPTT in a synthetic string memorization task.
Abstract:We study unbiased $(1+1)$ evolutionary algorithms on linear functions with an unknown number $n$ of bits with non-zero weight. Static algorithms achieve an optimal runtime of $O(n (\ln n)^{2+\epsilon})$, however, it remained unclear whether more dynamic parameter policies could yield better runtime guarantees. We consider two setups: one where the mutation rate follows a fixed schedule, and one where it may be adapted depending on the history of the run. For the first setup, we give a schedule that achieves a runtime of $(1\pm o(1))\beta n \ln n$, where $\beta \approx 3.552$, which is an asymptotic improvement over the runtime of the static setup. Moreover, we show that no schedule admits a better runtime guarantee and that the optimal schedule is essentially unique. For the second setup, we show that the runtime can be further improved to $(1\pm o(1)) e n \ln n$, which matches the performance of algorithms that know $n$ in advance. Finally, we study the related model of initial segment uncertainty with static position-dependent mutation rates, and derive asymptotically optimal lower bounds. This answers a question by Doerr, Doerr, and K\"otzing.