Abstract:This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved $96.5\%$ accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.
Abstract:Self-supervision methods learn representations by solving pretext tasks that do not require human-generated labels, alleviating the need for time-consuming annotations. These methods have been applied in computer vision, natural language processing, environmental sound analysis, and recently in music information retrieval, e.g. for pitch estimation. Particularly in the context of music, there are few insights about the fragility of these models regarding different distributions of data, and how they could be mitigated. In this paper, we explore these questions by dissecting a self-supervised model for pitch estimation adapted for tempo estimation via rigorous experimentation with synthetic data. Specifically, we study the relationship between the input representation and data distribution for self-supervised tempo estimation.