Abstract:Musical source separation (MSS) has recently seen a big breakthrough in separating instruments from a mixture in the context of Western music, but research on non-Western instruments is still limited due to a lack of data. In this demo, we use an existing dataset of Brazilian sama percussion to create artificial mixtures for training a U-Net model to separate the surdo drum, a traditional instrument in samba. Despite limited training data, the model effectively isolates the surdo, given the drum's repetitive patterns and its characteristic low-pitched timbre. These results suggest that MSS systems can be successfully harnessed to work in more culturally-inclusive scenarios without the need of collecting extensive amounts of data.
Abstract:Self-supervision methods learn representations by solving pretext tasks that do not require human-generated labels, alleviating the need for time-consuming annotations. These methods have been applied in computer vision, natural language processing, environmental sound analysis, and recently in music information retrieval, e.g. for pitch estimation. Particularly in the context of music, there are few insights about the fragility of these models regarding different distributions of data, and how they could be mitigated. In this paper, we explore these questions by dissecting a self-supervised model for pitch estimation adapted for tempo estimation via rigorous experimentation with synthetic data. Specifically, we study the relationship between the input representation and data distribution for self-supervised tempo estimation.