Abstract:We study the problem of learning binary classifiers from positive and unlabeled data when the unlabeled data distribution is shifted, which we call Positive and Imperfect Unlabeled (PIU) Learning. In the absence of covariate shifts, i.e., with perfect unlabeled data, Denis (1998) reduced this problem to learning under Massart noise; however, that reduction fails under even slight shifts. Our main results on PIU learning are the characterizations of the sample complexity of PIU learning and a computationally and sample-efficient algorithm achieving a misclassification error $\varepsilon$. We further show that our results lead to new algorithms for several related problems. 1. Learning from smooth distributions: We give algorithms that learn interesting concept classes from only positive samples under smooth feature distributions, bypassing known existing impossibility results and contributing to recent advances in smoothened learning (Haghtalab et al, J.ACM'24) (Chandrasekaran et al., COLT'24). 2. Learning with a list of unlabeled distributions: We design new algorithms that apply to a broad class of concept classes under the assumption that we are given a list of unlabeled distributions, one of which--unknown to the learner--is $O(1)$-close to the true feature distribution. 3. Estimation in the presence of unknown truncation: We give the first polynomial sample and time algorithm for estimating the parameters of an exponential family distribution from samples truncated to an unknown set approximable by polynomials in $L_1$-norm. This improves the algorithm by Lee et al. (FOCS'24) that requires approximation in $L_2$-norm. 4. Detecting truncation: We present new algorithms for detecting whether given samples have been truncated (or not) for a broad class of non-product distributions, including non-product distributions, improving the algorithm by De et al. (STOC'24).
Abstract:We propose a new algorithm that finds an $\varepsilon$-approximate fixed point of a smooth function from the $n$-dimensional $\ell_2$ unit ball to itself. We use the general framework of finding approximate solutions to a variational inequality, a problem that subsumes fixed point computation and the computation of a Nash Equilibrium. The algorithm's runtime is bounded by $e^{O(n)}/\varepsilon$, under the smoothed-analysis framework. This is the first known algorithm in such a generality whose runtime is faster than $(1/\varepsilon)^{O(n)}$, which is a time that suffices for an exhaustive search. We complement this result with a lower bound of $e^{\Omega(n)}$ on the query complexity for finding an $O(1)$-approximate fixed point on the unit ball, which holds even in the smoothed-analysis model, yet without the assumption that the function is smooth. Existing lower bounds are only known for the hypercube, and adapting them to the ball does not give non-trivial results even for finding $O(1/\sqrt{n})$-approximate fixed points.
Abstract:In this work, we consider the problem of learning one hidden layer ReLU neural networks with inputs from $\mathbb{R}^d$. We show that this learning problem is hard under standard cryptographic assumptions even when: (1) the size of the neural network is polynomial in $d$, (2) its input distribution is a standard Gaussian, and (3) the noise is Gaussian and polynomially small in $d$. Our hardness result is based on the hardness of the Continuous Learning with Errors (CLWE) problem, and in particular, is based on the largely believed worst-case hardness of approximately solving the shortest vector problem up to a multiplicative polynomial factor.
Abstract:We study the estimation of distributional parameters when samples are shown only if they fall in some unknown set $S \subseteq \mathbb{R}^d$. Kontonis, Tzamos, and Zampetakis (FOCS'19) gave a $d^{\mathrm{poly}(1/\varepsilon)}$ time algorithm for finding $\varepsilon$-accurate parameters for the special case of Gaussian distributions with diagonal covariance matrix. Recently, Diakonikolas, Kane, Pittas, and Zarifis (COLT'24) showed that this exponential dependence on $1/\varepsilon$ is necessary even when $S$ belongs to some well-behaved classes. These works leave the following open problems which we address in this work: Can we estimate the parameters of any Gaussian or even extend beyond Gaussians? Can we design $\mathrm{poly}(d/\varepsilon)$ time algorithms when $S$ is a simple set such as a halfspace? We make progress on both of these questions by providing the following results: 1. Toward the first question, we give a $d^{\mathrm{poly}(\ell/\varepsilon)}$ time algorithm for any exponential family that satisfies some structural assumptions and any unknown set $S$ that is $\varepsilon$-approximable by degree-$\ell$ polynomials. This result has two important applications: 1a) The first algorithm for estimating arbitrary Gaussian distributions from samples truncated to an unknown $S$; and 1b) The first algorithm for linear regression with unknown truncation and Gaussian features. 2. To address the second question, we provide an algorithm with runtime $\mathrm{poly}(d/\varepsilon)$ that works for a set of exponential families (containing all Gaussians) when $S$ is a halfspace or an axis-aligned rectangle. Along the way, we develop tools that may be of independent interest, including, a reduction from PAC learning with positive and unlabeled samples to PAC learning with positive and negative samples that is robust to certain covariate shifts.
Abstract:Inverse propensity-score weighted (IPW) estimators are prevalent in causal inference for estimating average treatment effects in observational studies. Under unconfoundedness, given accurate propensity scores and $n$ samples, the size of confidence intervals of IPW estimators scales down with $n$, and, several of their variants improve the rate of scaling. However, neither IPW estimators nor their variants are robust to inaccuracies: even if a single covariate has an $\varepsilon>0$ additive error in the propensity score, the size of confidence intervals of these estimators can increase arbitrarily. Moreover, even without errors, the rate with which the confidence intervals of these estimators go to zero with $n$ can be arbitrarily slow in the presence of extreme propensity scores (those close to 0 or 1). We introduce a family of Coarse IPW (CIPW) estimators that captures existing IPW estimators and their variants. Each CIPW estimator is an IPW estimator on a coarsened covariate space, where certain covariates are merged. Under mild assumptions, e.g., Lipschitzness in expected outcomes and sparsity of extreme propensity scores, we give an efficient algorithm to find a robust estimator: given $\varepsilon$-inaccurate propensity scores and $n$ samples, its confidence interval size scales with $\varepsilon+1/\sqrt{n}$. In contrast, under the same assumptions, existing estimators' confidence interval sizes are $\Omega(1)$ irrespective of $\varepsilon$ and $n$. Crucially, our estimator is data-dependent and we show that no data-independent CIPW estimator can be robust to inaccuracies.
Abstract:We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before. An example is the absentminded driver game, as well as team games in which the members have limited communication capabilities. In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings across three different solution concepts: Nash, multiselves based on evidential decision theory (EDT), and multiselves based on causal decision theory (CDT). We are interested in both exact and approximate solution computation. As special cases, we consider (1) single-player games, (2) two-player zero-sum games and relationships to maximin values, and (3) games without exogenous stochasticity (chance nodes). We relate these problems to the complexity classes P, PPAD, PLS, $\Sigma_2^P$ , $\exists$R, and $\exists \forall$R.
Abstract:As ML models become increasingly complex and integral to high-stakes domains such as finance and healthcare, they also become more susceptible to sophisticated adversarial attacks. We investigate the threat posed by undetectable backdoors in models developed by insidious external expert firms. When such backdoors exist, they allow the designer of the model to sell information to the users on how to carefully perturb the least significant bits of their input to change the classification outcome to a favorable one. We develop a general strategy to plant a backdoor to neural networks while ensuring that even if the model's weights and architecture are accessible, the existence of the backdoor is still undetectable. To achieve this, we utilize techniques from cryptography such as cryptographic signatures and indistinguishability obfuscation. We further introduce the notion of undetectable backdoors to language models and extend our neural network backdoor attacks to such models based on the existence of steganographic functions.
Abstract:We study the fundamental problem of transfer learning where a learning algorithm collects data from some source distribution $P$ but needs to perform well with respect to a different target distribution $Q$. A standard change of measure argument implies that transfer learning happens when the density ratio $dQ/dP$ is bounded. Yet, prior thought-provoking works by Kpotufe and Martinet (COLT, 2018) and Hanneke and Kpotufe (NeurIPS, 2019) demonstrate cases where the ratio $dQ/dP$ is unbounded, but transfer learning is possible. In this work, we focus on transfer learning over the class of low-degree polynomial estimators. Our main result is a general transfer inequality over the domain $\mathbb{R}^n$, proving that non-trivial transfer learning for low-degree polynomials is possible under very mild assumptions, going well beyond the classical assumption that $dQ/dP$ is bounded. For instance, it always applies if $Q$ is a log-concave measure and the inverse ratio $dP/dQ$ is bounded. To demonstrate the applicability of our inequality, we obtain new results in the settings of: (1) the classical truncated regression setting, where $dQ/dP$ equals infinity, and (2) the more recent out-of-distribution generalization setting for in-context learning linear functions with transformers. We also provide a discrete analogue of our transfer inequality on the Boolean Hypercube $\{-1,1\}^n$, and study its connections with the recent problem of Generalization on the Unseen of Abbe, Bengio, Lotfi and Rizk (ICML, 2023). Our main conceptual contribution is that the maximum influence of the error of the estimator $\widehat{f}-f^*$ under $Q$, $\mathrm{I}_{\max}(\widehat{f}-f^*)$, acts as a sufficient condition for transferability; when $\mathrm{I}_{\max}(\widehat{f}-f^*)$ is appropriately bounded, transfer is possible over the Boolean domain.
Abstract:While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an LLM to iteratively refine candidate (attack) prompts using tree-of-thoughts reasoning until one of the generated prompts jailbreaks the target. Crucially, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks. Using tree-of-thought reasoning allows TAP to navigate a large search space of prompts and pruning reduces the total number of queries sent to the target. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4 and GPT4-Turbo) for more than 80% of the prompts using only a small number of queries. This significantly improves upon the previous state-of-the-art black-box method for generating jailbreaks.
Abstract:Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-convex but smooth objective functions $f$ over unrestricted $d$-dimensional domains is one of the most fundamental problems in classical non-convex optimization. Nevertheless, the computational and query complexity of this problem are still not well understood when the dimension $d$ of the problem is independent of the approximation error. In this paper, we show the following computational and query complexity results: 1. The problem of finding approximate stationary points over unrestricted domains is PLS-complete. 2. For $d = 2$, we provide a zero-order algorithm for finding $\varepsilon$-approximate stationary points that requires at most $O(1/\varepsilon)$ value queries to the objective function. 3. We show that any algorithm needs at least $\Omega(1/\varepsilon)$ queries to the objective function and/or its gradient to find $\varepsilon$-approximate stationary points when $d=2$. Combined with the above, this characterizes the query complexity of this problem to be $\Theta(1/\varepsilon)$. 4. For $d = 2$, we provide a zero-order algorithm for finding $\varepsilon$-KKT points in constrained optimization problems that requires at most $O(1/\sqrt{\varepsilon})$ value queries to the objective function. This closes the gap between the works of Bubeck and Mikulincer [2020] and Vavasis [1993] and characterizes the query complexity of this problem to be $\Theta(1/\sqrt{\varepsilon})$. 5. Combining our results with the recent result of Fearnley et al. [2022], we show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.