Abstract:Efficiently modeling large 2D contexts is essential for various fields including Giga-Pixel Whole Slide Imaging (WSI) and remote sensing. Transformer-based models offer high parallelism but face challenges due to their quadratic complexity for handling long sequences. Recently, Mamba introduced a selective State Space Model (SSM) with linear complexity and high parallelism, enabling effective and efficient modeling of wide context in 1D sequences. However, extending Mamba to vision tasks, which inherently involve 2D structures, results in spatial discrepancies due to the limitations of 1D sequence processing. On the other hand, current 2D SSMs inherently model 2D structures but they suffer from prohibitively slow computation due to the lack of efficient parallel algorithms. In this work, we propose 2DMamba, a novel 2D selective SSM framework that incorporates the 2D spatial structure of images into Mamba, with a highly optimized hardware-aware operator, adopting both spatial continuity and computational efficiency. We validate the versatility of our approach on both WSIs and natural images. Extensive experiments on 10 public datasets for WSI classification and survival analysis show that 2DMamba~improves up to $2.48\%$ in AUC, $3.11\%$ in F1 score, $2.47\%$ in accuracy and $5.52\%$ in C-index. Additionally, integrating our method with VMamba for natural imaging yields $0.5$ to $0.7$ improvements in mIoU on the ADE20k semantic segmentation dataset, and $0.2\%$ accuracy improvement on ImageNet-1K classification dataset. Our code is available at https://github.com/AtlasAnalyticsLab/2DMamba.
Abstract:Diffusion Generative Models (DGM) have rapidly surfaced as emerging topics in the field of computer vision, garnering significant interest across a wide array of deep learning applications. Despite their high computational demand, these models are extensively utilized for their superior sample quality and robust mode coverage. While research in diffusion generative models is advancing, exploration within the domain of computational pathology and its large-scale datasets has been comparatively gradual. Bridging the gap between the high-quality generation capabilities of Diffusion Generative Models and the intricate nature of pathology data, this paper presents an in-depth comparative analysis of diffusion methods applied to a pathology dataset. Our analysis extends to datasets with varying Fields of View (FOV), revealing that DGMs are highly effective in producing high-quality synthetic data. An ablative study is also conducted, followed by a detailed discussion on the impact of various methods on the synthesized histopathology images. One striking observation from our experiments is how the adjustment of image size during data generation can simulate varying fields of view. These findings underscore the potential of DGMs to enhance the quality and diversity of synthetic pathology data, especially when used with real data, ultimately increasing accuracy of deep learning models in histopathology. Code is available from https://github.com/AtlasAnalyticsLab/Diffusion4Path
Abstract:Colorectal cancer (CRC) is one of the few cancers that have an established dysplasia-carcinoma sequence that benefits from screening. Everyone over 50 years of age in Canada is eligible for CRC screening. About 20\% of those people will undergo a biopsy for a pre-neoplastic polyp and, in many cases, multiple polyps. As such, these polyp biopsies make up the bulk of a pathologist's workload. Developing an efficient computational model to help screen these polyp biopsies can improve the pathologist's workflow and help guide their attention to critical areas on the slide. DL models face significant challenges in computational pathology (CPath) because of the gigapixel image size of whole-slide images and the scarcity of detailed annotated datasets. It is, therefore, crucial to leverage self-supervised learning (SSL) methods to alleviate the burden and cost of data annotation. However, current research lacks methods to apply SSL frameworks to analyze pathology data effectively. This paper aims to propose an optimized Barlow Twins framework for colorectal polyps screening. We adapt its hyperparameters, augmentation strategy and encoder to the specificity of the pathology data to enhance performance. Additionally, we investigate the best Field of View (FoV) for colorectal polyps screening and propose a new benchmark dataset for CRC screening, made of four types of colorectal polyps and normal tissue, by performing downstream tasking on MHIST and NCT-CRC-7K datasets. Furthermore, we show that the SSL representations are more meaningful and qualitative than the supervised ones and that Barlow Twins benefits from the Swin Transformer when applied to pathology data. Codes are avaialble from https://github.com/AtlasAnalyticsLab/PathBT.
Abstract:Mamba-based models, VMamba and Vim, are a recent family of vision encoders that offer promising performance improvements in many computer vision tasks. This paper compares Mamba-based models with traditional Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) using the breast ultrasound BUSI and B datasets. Our evaluation, which includes multiple runs of experiments and statistical significance analysis, demonstrates that Mamba-based architectures frequently outperform CNN and ViT models with statistically significant results. These Mamba-based models effectively capture long-range dependencies while maintaining inductive biases, making them suitable for applications with limited data.
Abstract:First-order optimization methods are currently the mainstream in training deep neural networks (DNNs). Optimizers like Adam incorporate limited curvature information by employing the diagonal matrix preconditioning of the stochastic gradient during the training. Despite their widespread, second-order optimization algorithms exhibit superior convergence properties compared to their first-order counterparts e.g. Adam and SGD. However, their practicality in training DNNs are still limited due to increased per-iteration computations and suboptimal accuracy compared to the first order methods. We present AdaFisher--an adaptive second-order optimizer that leverages a block-diagonal approximation to the Fisher information matrix for adaptive gradient preconditioning. AdaFisher aims to bridge the gap between enhanced convergence capabilities and computational efficiency in second-order optimization framework for training DNNs. Despite the slow pace of second-order optimizers, we showcase that AdaFisher can be reliably adopted for image classification, language modelling and stand out for its stability and robustness in hyperparameter tuning. We demonstrate that AdaFisher outperforms the SOTA optimizers in terms of both accuracy and convergence speed. Code available from \href{https://github.com/AtlasAnalyticsLab/AdaFisher}{https://github.com/AtlasAnalyticsLab/AdaFisher}
Abstract:Representation learning from Gigapixel Whole Slide Images (WSI) poses a significant challenge in computational pathology due to the complicated nature of tissue structures and the scarcity of labeled data. Multi-instance learning methods have addressed this challenge, leveraging image patches to classify slides utilizing pretrained models using Self-Supervised Learning (SSL) approaches. The performance of both SSL and MIL methods relies on the architecture of the feature encoder. This paper proposes leveraging the Vision Mamba (Vim) architecture, inspired by state space models, within the DINO framework for representation learning in computational pathology. We evaluate the performance of Vim against Vision Transformers (ViT) on the Camelyon16 dataset for both patch-level and slide-level classification. Our findings highlight Vim's enhanced performance compared to ViT, particularly at smaller scales, where Vim achieves an 8.21 increase in ROC AUC for models of similar size. An explainability analysis further highlights Vim's capabilities, which reveals that Vim uniquely emulates the pathologist workflow-unlike ViT. This alignment with human expert analysis highlights Vim's potential in practical diagnostic settings and contributes significantly to developing effective representation-learning algorithms in computational pathology. We release the codes and pretrained weights at \url{https://github.com/AtlasAnalyticsLab/Vim4Path}.
Abstract:Multilabel representation learning is recognized as a challenging problem that can be associated with either label dependencies between object categories or data-related issues such as the inherent imbalance of positive/negative samples. Recent advances address these challenges from model- and data-centric viewpoints. In model-centric, the label correlation is obtained by an external model designs (e.g., graph CNN) to incorporate an inductive bias for training. However, they fail to design an end-to-end training framework, leading to high computational complexity. On the contrary, in data-centric, the realistic nature of the dataset is considered for improving the classification while ignoring the label dependencies. In this paper, we propose a new end-to-end training framework -- dubbed KMCL (Kernel-based Mutlilabel Contrastive Learning) -- to address the shortcomings of both model- and data-centric designs. The KMCL first transforms the embedded features into a mixture of exponential kernels in Gaussian RKHS. It is then followed by encoding an objective loss that is comprised of (a) reconstruction loss to reconstruct kernel representation, (b) asymmetric classification loss to address the inherent imbalance problem, and (c) contrastive loss to capture label correlation. The KMCL models the uncertainty of the feature encoder while maintaining a low computational footprint. Extensive experiments are conducted on image classification tasks to showcase the consistent improvements of KMCL over the SOTA methods. PyTorch implementation is provided in \url{https://github.com/mahdihosseini/KMCL}.
Abstract:Computational Pathology (CoPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CoPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology facilitating transformational changes in the diagnosis and treatment of cancer diseases. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CoPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CoPath. In this article we provide a comprehensive review of more than 700 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CoPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CoPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CoPath.
Abstract:Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
Abstract:Explaining the generalization characteristics of deep learning is an emerging topic in advanced machine learning. There are several unanswered questions about how learning under stochastic optimization really works and why certain strategies are better than others. In this paper, we address the following question: \textit{can we probe intermediate layers of a deep neural network to identify and quantify the learning quality of each layer?} With this question in mind, we propose new explainability metrics that measure the redundant information in a network's layers using a low-rank factorization framework and quantify a complexity measure that is highly correlated with the generalization performance of a given optimizer, network, and dataset. We subsequently exploit these metrics to augment the Stochastic Gradient Descent (SGD) optimizer by adaptively adjusting the learning rate in each layer to improve in generalization performance. Our augmented SGD -- dubbed RMSGD -- introduces minimal computational overhead compared to SOTA methods and outperforms them by exhibiting strong generalization characteristics across application, architecture, and dataset.