Abstract:Model evaluations are central to understanding the safety, risks, and societal impacts of AI systems. While most real-world AI applications involve human-AI interaction, most current evaluations (e.g., common benchmarks) of AI models do not. Instead, they incorporate human factors in limited ways, assessing the safety of models in isolation, thereby falling short of capturing the complexity of human-model interactions. In this paper, we discuss and operationalize a definition of an emerging category of evaluations -- "human interaction evaluations" (HIEs) -- which focus on the assessment of human-model interactions or the process and the outcomes of humans using models. First, we argue that HIEs can be used to increase the validity of safety evaluations, assess direct human impact and interaction-specific harms, and guide future assessments of models' societal impact. Second, we propose a safety-focused HIE design framework -- containing a human-LLM interaction taxonomy -- with three stages: (1) identifying the risk or harm area, (2) characterizing the use context, and (3) choosing the evaluation parameters. Third, we apply our framework to two potential evaluations for overreliance and persuasion risks. Finally, we conclude with tangible recommendations for addressing concerns over costs, replicability, and unrepresentativeness of HIEs.
Abstract:The proliferation of applications using artificial intelligence (AI) systems has led to a growing number of users interacting with these systems through sophisticated interfaces. Human-computer interaction research has long shown that interfaces shape both user behavior and user perception of technical capabilities and risks. Yet, practitioners and researchers evaluating the social and ethical risks of AI systems tend to overlook the impact of anthropomorphic, deceptive, and immersive interfaces on human-AI interactions. Here, we argue that design features of interfaces with adaptive AI systems can have cascading impacts, driven by feedback loops, which extend beyond those previously considered. We first conduct a scoping review of AI interface designs and their negative impact to extract salient themes of potentially harmful design patterns in AI interfaces. Then, we propose Design-Enhanced Control of AI systems (DECAI), a conceptual model to structure and facilitate impact assessments of AI interface designs. DECAI draws on principles from control systems theory -- a theory for the analysis and design of dynamic physical systems -- to dissect the role of the interface in human-AI systems. Through two case studies on recommendation systems and conversational language model systems, we show how DECAI can be used to evaluate AI interface designs.
Abstract:This is a labor of the Learning Community cohort that was convened by MAIEI in Winter 2021 to work through and discuss important research issues in the field of AI ethics from a multidisciplinary lens. The community came together supported by facilitators from the MAIEI staff to vigorously debate and explore the nuances of issues like bias, privacy, disinformation, accountability, and more especially examining them from the perspective of industry, civil society, academia, and government. The outcome of these discussions is reflected in the report that you are reading now - an exploration of a variety of issues with deep-dive, critical commentary on what has been done, what worked and what didn't, and what remains to be done so that we can meaningfully move forward in addressing the societal challenges posed by the deployment of AI systems. The chapters titled "Design and Techno-isolationism", "Facebook and the Digital Divide: Perspectives from Myanmar, Mexico, and India", "Future of Work", and "Media & Communications & Ethical Foresight" will hopefully provide with you novel lenses to explore this domain beyond the usual tropes that are covered in the domain of AI ethics.