Abstract:The proliferation of applications using artificial intelligence (AI) systems has led to a growing number of users interacting with these systems through sophisticated interfaces. Human-computer interaction research has long shown that interfaces shape both user behavior and user perception of technical capabilities and risks. Yet, practitioners and researchers evaluating the social and ethical risks of AI systems tend to overlook the impact of anthropomorphic, deceptive, and immersive interfaces on human-AI interactions. Here, we argue that design features of interfaces with adaptive AI systems can have cascading impacts, driven by feedback loops, which extend beyond those previously considered. We first conduct a scoping review of AI interface designs and their negative impact to extract salient themes of potentially harmful design patterns in AI interfaces. Then, we propose Design-Enhanced Control of AI systems (DECAI), a conceptual model to structure and facilitate impact assessments of AI interface designs. DECAI draws on principles from control systems theory -- a theory for the analysis and design of dynamic physical systems -- to dissect the role of the interface in human-AI systems. Through two case studies on recommendation systems and conversational language model systems, we show how DECAI can be used to evaluate AI interface designs.
Abstract:Gun violence is a pressing and growing human rights issue that affects nearly every dimension of the social fabric, from healthcare and education to psychology and the economy. Reliable data on firearm events is paramount to developing more effective public policy and emergency responses. However, the lack of comprehensive databases and the risks of in-person surveys prevent human rights organizations from collecting needed data in most countries. Here, we partner with a Brazilian human rights organization to conduct a systematic evaluation of language models to assist with monitoring real-world firearm events from social media data. We propose a fine-tuned BERT-based model trained on Twitter (now X) texts to distinguish gun violence reports from ordinary Portuguese texts. Our model achieves a high AUC score of 0.97. We then incorporate our model into a web application and test it in a live intervention. We study and interview Brazilian analysts who continuously fact-check social media texts to identify new gun violence events. Qualitative assessments show that our solution helped all analysts use their time more efficiently and expanded their search capacities. Quantitative assessments show that the use of our model was associated with more analysts' interactions with online users reporting gun violence. Taken together, our findings suggest that modern Natural Language Processing techniques can help support the work of human rights organizations.
Abstract:Personal data collected at scale from surveys or digital devices offers important insights for statistical analysis and scientific research. Safely sharing such data while protecting privacy is however challenging. Anonymization allows data to be shared while minimizing privacy risks, but traditional anonymization techniques have been repeatedly shown to provide limited protection against re-identification attacks in practice. Among modern anonymization techniques, synthetic data generation (SDG) has emerged as a potential solution to find a good tradeoff between privacy and statistical utility. Synthetic data is typically generated using algorithms that learn the statistical distribution of the original records, to then generate "artificial" records that are structurally and statistically similar to the original ones. Yet, the fact that synthetic records are "artificial" does not, per se, guarantee that privacy is protected. In this work, we systematically evaluate the tradeoffs between protecting privacy and preserving statistical utility for a wide range of synthetic data generation algorithms. Modeling privacy as protection against attribute inference attacks (AIAs), we extend and adapt linear reconstruction attacks, which have not been previously studied in the context of synthetic data. While prior work suggests that AIAs may be effective only on few outlier records, we show they can be very effective even on randomly selected records. We evaluate attacks on synthetic datasets ranging from 10^3 to 10^6 records, showing that even for the same generative model, the attack effectiveness can drastically increase when a larger number of synthetic records is generated. Overall, our findings prove that synthetic data is subject to privacy-utility tradeoffs just like other anonymization techniques: when good utility is preserved, attribute inference can be a risk for many data subjects.