Abstract:Accurate classification of sleep stages from less obtrusive sensor measurements such as the electrocardiogram (ECG) or photoplethysmogram (PPG) could enable important applications in sleep medicine. Existing approaches to this problem have typically used deep learning models designed and trained to operate on one or more specific input signals. However, the datasets used to develop these models often do not contain the same sets of input signals. Some signals, particularly PPG, are much less prevalent than others, and this has previously been addressed with techniques such as transfer learning. Additionally, only training on one or more fixed modalities precludes cross-modal information transfer from other sources, which has proved valuable in other problem domains. To address this, we introduce wav2sleep, a unified model designed to operate on variable sets of input signals during training and inference. After jointly training on over 10,000 overnight recordings from six publicly available polysomnography datasets, including SHHS and MESA, wav2sleep outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals.
Abstract:Advances in camera-based physiological monitoring have enabled the robust, non-contact measurement of respiration and the cardiac pulse, which are known to be indicative of the sleep stage. This has led to research into camera-based sleep monitoring as a promising alternative to "gold-standard" polysomnography, which is cumbersome, expensive to administer, and hence unsuitable for longer-term clinical studies. In this paper, we introduce SleepVST, a transformer model which enables state-of-the-art performance in camera-based sleep stage classification (sleep staging). After pre-training on contact sensor data, SleepVST outperforms existing methods for cardio-respiratory sleep staging on the SHHS and MESA datasets, achieving total Cohen's kappa scores of 0.75 and 0.77 respectively. We then show that SleepVST can be successfully transferred to cardio-respiratory waveforms extracted from video, enabling fully contact-free sleep staging. Using a video dataset of 50 nights, we achieve a total accuracy of 78.8\% and a Cohen's $\kappa$ of 0.71 in four-class video-based sleep staging, setting a new state-of-the-art in the domain.
Abstract:Conventional sleep monitoring is time-consuming, expensive and uncomfortable, requiring a large number of contact sensors to be attached to the patient. Video data is commonly recorded as part of a sleep laboratory assessment. If accurate sleep staging could be achieved solely from video, this would overcome many of the problems of traditional methods. In this work we use heart rate, breathing rate and activity measures, all derived from a near-infrared video camera, to perform sleep stage classification. We use a deep transfer learning approach to overcome data scarcity, by using an existing contact-sensor dataset to learn effective representations from the heart and breathing rate time series. Using a dataset of 50 healthy volunteers, we achieve an accuracy of 73.4\% and a Cohen's kappa of 0.61 in four-class sleep stage classification, establishing a new state-of-the-art for video-based sleep staging.