Abstract:Conventional sleep monitoring is time-consuming, expensive and uncomfortable, requiring a large number of contact sensors to be attached to the patient. Video data is commonly recorded as part of a sleep laboratory assessment. If accurate sleep staging could be achieved solely from video, this would overcome many of the problems of traditional methods. In this work we use heart rate, breathing rate and activity measures, all derived from a near-infrared video camera, to perform sleep stage classification. We use a deep transfer learning approach to overcome data scarcity, by using an existing contact-sensor dataset to learn effective representations from the heart and breathing rate time series. Using a dataset of 50 healthy volunteers, we achieve an accuracy of 73.4\% and a Cohen's kappa of 0.61 in four-class sleep stage classification, establishing a new state-of-the-art for video-based sleep staging.
Abstract:Computer models are widely used across a range of scientific disciplines to describe various complex physical systems, however to perform full uncertainty quantification we often need to employ emulators. An emulator is a fast statistical construct that mimics the slow to evaluate computer model, and greatly aids the vastly more computationally intensive uncertainty quantification calculations that an important scientific analysis often requires. We examine the problem of emulating computer models that possess multiple, partial discontinuities occurring at known non-linear location. We introduce the TENSE framework, based on carefully designed correlation structures that respect the discontinuities while enabling full exploitation of any smoothness/continuity elsewhere. This leads to a single emulator object that can be updated by all runs simultaneously, and also used for efficient design. This approach avoids having to split the input space into multiple subregions. We apply the TENSE framework to the TNO Challenge II, emulating the OLYMPUS reservoir model, which possess multiple such discontinuities.