Abstract:Adapting pre-trained language models (PLMs) for time-series text classification amidst evolving domain shifts (EDS) is critical for maintaining accuracy in applications like stance detection. This study benchmarks the effectiveness of evolving domain adaptation (EDA) strategies, notably self-training, domain-adversarial training, and domain-adaptive pretraining, with a focus on an incremental self-training method. Our analysis across various datasets reveals that this incremental method excels at adapting PLMs to EDS, outperforming traditional domain adaptation techniques. These findings highlight the importance of continually updating PLMs to ensure their effectiveness in real-world applications, paving the way for future research into PLM robustness against the natural temporal evolution of language.
Abstract:Generative AI models like DALL-E 2 can interpret textual prompts and generate high-quality images exhibiting human creativity. Though public enthusiasm is booming, systematic auditing of potential gender biases in AI-generated images remains scarce. We addressed this gap by examining the prevalence of two occupational gender biases (representational and presentational biases) in 15,300 DALL-E 2 images spanning 153 occupations, and assessed potential bias amplification by benchmarking against 2021 census labor statistics and Google Images. Our findings reveal that DALL-E 2 underrepresents women in male-dominated fields while overrepresenting them in female-dominated occupations. Additionally, DALL-E 2 images tend to depict more women than men with smiling faces and downward-pitching heads, particularly in female-dominated (vs. male-dominated) occupations. Our computational algorithm auditing study demonstrates more pronounced representational and presentational biases in DALL-E 2 compared to Google Images and calls for feminist interventions to prevent such bias-laden AI-generated images to feedback into the media ecology.