Abstract:We present a new algorithm for imitation learning in infinite horizon linear MDPs dubbed ILARL which greatly improves the bound on the number of trajectories that the learner needs to sample from the environment. In particular, we remove exploration assumptions required in previous works and we improve the dependence on the desired accuracy $\epsilon$ from $\mathcal{O}\br{\epsilon^{-5}}$ to $\mathcal{O}\br{\epsilon^{-4}}$. Our result relies on a connection between imitation learning and online learning in MDPs with adversarial losses. For the latter setting, we present the first result for infinite horizon linear MDP which may be of independent interest. Moreover, we are able to provide a strengthen result for the finite horizon case where we achieve $\mathcal{O}\br{\epsilon^{-2}}$. Numerical experiments with linear function approximation shows that ILARL outperforms other commonly used algorithms.
Abstract:In online reinforcement learning (RL), instead of employing standard structural assumptions on Markov decision processes (MDPs), using a certain coverage condition (original from offline RL) is enough to ensure sample-efficient guarantees (Xie et al. 2023). In this work, we focus on this new direction by digging more possible and general coverage conditions, and study the potential and the utility of them in efficient online RL. We identify more concepts, including the $L^p$ variant of concentrability, the density ratio realizability, and trade-off on the partial/rest coverage condition, that can be also beneficial to sample-efficient online RL, achieving improved regret bound. Furthermore, if exploratory offline data are used, under our coverage conditions, both statistically and computationally efficient guarantees can be achieved for online RL. Besides, even though the MDP structure is given, e.g., linear MDP, we elucidate that, good coverage conditions are still beneficial to obtain faster regret bound beyond $\widetilde{O}(\sqrt{T})$ and even a logarithmic order regret. These results provide a good justification for the usage of general coverage conditions in efficient online RL.
Abstract:While Reinforcement Learning (RL) aims to train an agent from a reward function in a given environment, Inverse Reinforcement Learning (IRL) seeks to recover the reward function from observing an expert's behavior. It is well known that, in general, various reward functions can lead to the same optimal policy, and hence, IRL is ill-defined. However, (Cao et al., 2021) showed that, if we observe two or more experts with different discount factors or acting in different environments, the reward function can under certain conditions be identified up to a constant. This work starts by showing an equivalent identifiability statement from multiple experts in tabular MDPs based on a rank condition, which is easily verifiable and is shown to be also necessary. We then extend our result to various different scenarios, i.e., we characterize reward identifiability in the case where the reward function can be represented as a linear combination of given features, making it more interpretable, or when we have access to approximate transition matrices. Even when the reward is not identifiable, we provide conditions characterizing when data on multiple experts in a given environment allows to generalize and train an optimal agent in a new environment. Our theoretical results on reward identifiability and generalizability are validated in various numerical experiments.
Abstract:This work develops new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning (IL) with linear function approximation without restrictive coherence assumptions. We begin with the minimax formulation of the problem and then outline how to leverage classical tools from optimization, in particular, the proximal-point method (PPM) and dual smoothing, for online and offline IL, respectively. Thanks to PPM, we avoid nested policy evaluation and cost updates for online IL appearing in the prior literature. In particular, we do away with the conventional alternating updates by the optimization of a single convex and smooth objective over both cost and Q-functions. When solved inexactly, we relate the optimization errors to the suboptimality of the recovered policy. As an added bonus, by re-interpreting PPM as dual smoothing with the expert policy as a center point, we also obtain an offline IL algorithm enjoying theoretical guarantees in terms of required expert trajectories. Finally, we achieve convincing empirical performance for both linear and neural network function approximation.
Abstract:This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the $\epsilon$-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that falls in this regime. In this work, we provide an initial attempt on theoretical understanding deep RL from the perspective of function class and neural networks architectures (e.g., width and depth) beyond the "linear" regime. To be specific, we focus on the value based algorithm with the $\epsilon$-greedy exploration via deep (and two-layer) neural networks endowed by Besov (and Barron) function spaces, respectively, which aims at approximating an $\alpha$-smooth Q-function in a $d$-dimensional feature space. We prove that, with $T$ episodes, scaling the width $m = \widetilde{\mathcal{O}}(T^{\frac{d}{2\alpha + d}})$ and the depth $L=\mathcal{O}(\log T)$ of the neural network for deep RL is sufficient for learning with sublinear regret in Besov spaces. Moreover, for a two layer neural network endowed by the Barron space, scaling the width $\Omega(\sqrt{T})$ is sufficient. To achieve this, the key issue in our analysis is how to estimate the temporal difference error under deep neural function approximation as the $\epsilon$-greedy exploration is not enough to ensure "optimism". Our analysis reformulates the temporal difference error in an $L^2(\mathrm{d}\mu)$-integrable space over a certain averaged measure $\mu$, and transforms it to a generalization problem under the non-iid setting. This might have its own interest in RL theory for better understanding $\epsilon$-greedy exploration in deep RL.
Abstract:Imitation learning (IL) is a popular paradigm for training policies in robotic systems when specifying the reward function is difficult. However, despite the success of IL algorithms, they impose the somewhat unrealistic requirement that the expert demonstrations must come from the same domain in which a new imitator policy is to be learned. We consider a practical setting, where (i) state-only expert demonstrations from the real (deployment) environment are given to the learner, (ii) the imitation learner policy is trained in a simulation (training) environment whose transition dynamics is slightly different from the real environment, and (iii) the learner does not have any access to the real environment during the training phase beyond the batch of demonstrations given. Most of the current IL methods, such as generative adversarial imitation learning and its state-only variants, fail to imitate the optimal expert behavior under the above setting. By leveraging insights from the Robust reinforcement learning (RL) literature and building on recent adversarial imitation approaches, we propose a robust IL algorithm to learn policies that can effectively transfer to the real environment without fine-tuning. Furthermore, we empirically demonstrate on continuous-control benchmarks that our method outperforms the state-of-the-art state-only IL method in terms of the zero-shot transfer performance in the real environment and robust performance under different testing conditions.
Abstract:Abstract object properties and their relations are deeply rooted in human common sense, allowing people to predict the dynamics of the world even in situations that are novel but governed by familiar laws of physics. Standard machine learning models in model-based reinforcement learning are inadequate to generalize in this way. Inspired by the classic framework of noisy indeterministic deictic (NID) rules, we introduce here Neural NID, a method that learns abstract object properties and relations between objects with a suitably regularized graph neural network. We validate the greater generalization capability of Neural NID on simple benchmarks specifically designed to assess the transition dynamics learned by the model.
Abstract:We study the inverse reinforcement learning (IRL) problem under the \emph{transition dynamics mismatch} between the expert and the learner. In particular, we consider the Maximum Causal Entropy (MCE) IRL learner model and provide an upper bound on the learner's performance degradation based on the $\ell_1$-distance between the two transition dynamics of the expert and the learner. Then, by leveraging insights from the Robust RL literature, we propose a robust MCE IRL algorithm, which is a principled approach to help with this mismatch issue. Finally, we empirically demonstrate the stable performance of our algorithm compared to the standard MCE IRL algorithm under transition mismatches in finite MDP problems.