Abstract:Traditional generalization results in statistical learning require a training data set made of independently drawn examples. Most of the recent efforts to relax this independence assumption have considered either purely temporal (mixing) dependencies, or graph-dependencies, where non-adjacent vertices correspond to independent random variables. Both approaches have their own limitations, the former requiring a temporal ordered structure, and the latter lacking a way to quantify the strength of inter-dependencies. In this work, we bridge these two lines of work by proposing a framework where dependencies decay with graph distance. We derive generalization bounds leveraging the online-to-PAC framework, by deriving a concentration result and introducing an online learning framework incorporating the graph structure. The resulting high-probability generalization guarantees depend on both the mixing rate and the graph's chromatic number.
Abstract:We study the generalization error of statistical learning algorithms in a non-i.i.d. setting, where the training data is sampled from a stationary mixing process. We develop an analytic framework for this scenario based on a reduction to online learning with delayed feedback. In particular, we show that the existence of an online learning algorithm with bounded regret (against a fixed statistical learning algorithm in a specially constructed game of online learning with delayed feedback) implies low generalization error of said statistical learning method even if the data sequence is sampled from a mixing time series. The rates demonstrate a trade-off between the amount of delay in the online learning game and the degree of dependence between consecutive data points, with near-optimal rates recovered in a number of well-studied settings when the delay is tuned appropriately as a function of the mixing time of the process.
Abstract:We propose a new framework for formulating optimal transport distances between Markov chains. Previously known formulations studied couplings between the entire joint distribution induced by the chains, and derived solutions via a reduction to dynamic programming (DP) in an appropriately defined Markov decision process. This formulation has, however, not led to particularly efficient algorithms so far, since computing the associated DP operators requires fully solving a static optimal transport problem, and these operators need to be applied numerous times during the overall optimization process. In this work, we develop an alternative perspective by considering couplings between a flattened version of the joint distributions that we call discounted occupancy couplings, and show that calculating optimal transport distances in the full space of joint distributions can be equivalently formulated as solving a linear program (LP) in this reduced space. This LP formulation allows us to port several algorithmic ideas from other areas of optimal transport theory. In particular, our formulation makes it possible to introduce an appropriate notion of entropy regularization into the optimization problem, which in turn enables us to directly calculate optimal transport distances via a Sinkhorn-like method we call Sinkhorn Value Iteration (SVI). We show both theoretically and empirically that this method converges quickly to an optimal coupling, essentially at the same computational cost of running vanilla Sinkhorn in each pair of states. Along the way, we point out that our optimal transport distance exactly matches the common notion of bisimulation metrics between Markov chains, and thus our results also apply to computing such metrics, and in fact our algorithm turns out to be significantly more efficient than the best known methods developed so far for this purpose.
Abstract:We study offline Reinforcement Learning in large infinite-horizon discounted Markov Decision Processes (MDPs) when the reward and transition models are linearly realizable under a known feature map. Starting from the classic linear-program formulation of the optimal control problem in MDPs, we develop a new algorithm that performs a form of gradient ascent in the space of feature occupancies, defined as the expected feature vectors that can potentially be generated by executing policies in the environment. We show that the resulting simple algorithm satisfies strong computational and sample complexity guarantees, achieved under the least restrictive data coverage assumptions known in the literature. In particular, we show that the sample complexity of our method scales optimally with the desired accuracy level and depends on a weak notion of coverage that only requires the empirical feature covariance matrix to cover a single direction in the feature space (as opposed to covering a full subspace). Additionally, our method is easy to implement and requires no prior knowledge of the coverage ratio (or even an upper bound on it), which altogether make it the strongest known algorithm for this setting to date.
Abstract:We study the problem of online learning in contextual bandit problems where the loss function is assumed to belong to a known parametric function class. We propose a new analytic framework for this setting that bridges the Bayesian theory of information-directed sampling due to Russo and Van Roy (2018) and the worst-case theory of Foster, Kakade, Qian, and Rakhlin (2021) based on the decision-estimation coefficient. Drawing from both lines of work, we propose a algorithmic template called Optimistic Information-Directed Sampling and show that it can achieve instance-dependent regret guarantees similar to the ones achievable by the classic Bayesian IDS method, but with the major advantage of not requiring any Bayesian assumptions. The key technical innovation of our analysis is introducing an optimistic surrogate model for the regret and using it to define a frequentist version of the Information Ratio of Russo and Van Roy (2018), and a less conservative version of the Decision Estimation Coefficient of Foster et al. (2021). Keywords: Contextual bandits, information-directed sampling, decision estimation coefficient, first-order regret bounds.
Abstract:We study the performance of stochastic first-order methods for finding saddle points of convex-concave functions. A notorious challenge faced by such methods is that the gradients can grow arbitrarily large during optimization, which may result in instability and divergence. In this paper, we propose a simple and effective regularization technique that stabilizes the iterates and yields meaningful performance guarantees even if the domain and the gradient noise scales linearly with the size of the iterates (and is thus potentially unbounded). Besides providing a set of general results, we also apply our algorithm to a specific problem in reinforcement learning, where it leads to performance guarantees for finding near-optimal policies in an average-reward MDP without prior knowledge of the bias span.
Abstract:We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a reproducing kernel Hilbert space, which allows for a more flexible modeling of complex decision-making scenarios. We propose a computationally efficient algorithm that makes use of a new optimistically biased estimator for the loss functions and achieves near-optimal regret guarantees under a variety of eigenvalue decay assumptions made on the underlying kernel. Specifically, under the assumption of polynomial eigendecay with exponent $c>1$, the regret is $\widetilde{O}(KT^{\frac{1}{2}(1+\frac{1}{c})})$, where $T$ denotes the number of rounds and $K$ the number of actions. Furthermore, when the eigendecay follows an exponential pattern, we achieve an even tighter regret bound of $\widetilde{O}(\sqrt{T})$. These rates match the lower bounds in all special cases where lower bounds are known at all, and match the best known upper bounds available for the more well-studied stochastic counterpart of our problem.
Abstract:We study the problem of offline policy optimization in stochastic contextual bandit problems, where the goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy. Rather than making any structural assumptions on the reward function, we assume access to a given policy class and aim to compete with the best comparator policy within this class. In this setting, a standard approach is to compute importance-weighted estimators of the value of each policy, and select a policy that minimizes the estimated value up to a "pessimistic" adjustment subtracted from the estimates to reduce their random fluctuations. In this paper, we show that a simple alternative approach based on the "implicit exploration" estimator of \citet{Neu2015} yields performance guarantees that are superior in nearly all possible terms to all previous results. Most notably, we remove an extremely restrictive "uniform coverage" assumption made in all previous works. These improvements are made possible by the observation that the upper and lower tails importance-weighted estimators behave very differently from each other, and their careful control can massively improve on previous results that were all based on symmetric two-sided concentration inequalities. We also extend our results to infinite policy classes in a PAC-Bayesian fashion, and showcase the robustness of our algorithm to the choice of hyper-parameters by means of numerical simulations.
Abstract:We present a new framework for deriving bounds on the generalization bound of statistical learning algorithms from the perspective of online learning. Specifically, we construct an online learning game called the "generalization game", where an online learner is trying to compete with a fixed statistical learning algorithm in predicting the sequence of generalization gaps on a training set of i.i.d. data points. We establish a connection between the online and statistical learning setting by showing that the existence of an online learning algorithm with bounded regret in this game implies a bound on the generalization error of the statistical learning algorithm, up to a martingale concentration term that is independent of the complexity of the statistical learning method. This technique allows us to recover several standard generalization bounds including a range of PAC-Bayesian and information-theoretic guarantees, as well as generalizations thereof.
Abstract:Offline Reinforcement Learning (RL) aims to learn a near-optimal policy from a fixed dataset of transitions collected by another policy. This problem has attracted a lot of attention recently, but most existing methods with strong theoretical guarantees are restricted to finite-horizon or tabular settings. In constrast, few algorithms for infinite-horizon settings with function approximation and minimal assumptions on the dataset are both sample and computationally efficient. Another gap in the current literature is the lack of theoretical analysis for the average-reward setting, which is more challenging than the discounted setting. In this paper, we address both of these issues by proposing a primal-dual optimization method based on the linear programming formulation of RL. Our key contribution is a new reparametrization that allows us to derive low-variance gradient estimators that can be used in a stochastic optimization scheme using only samples from the behavior policy. Our method finds an $\varepsilon$-optimal policy with $O(\varepsilon^{-4})$ samples, improving on the previous $O(\varepsilon^{-5})$, while being computationally efficient for infinite-horizon discounted and average-reward MDPs with realizable linear function approximation and partial coverage. Moreover, to the best of our knowledge, this is the first theoretical result for average-reward offline RL.