Abstract:Traditional generalization results in statistical learning require a training data set made of independently drawn examples. Most of the recent efforts to relax this independence assumption have considered either purely temporal (mixing) dependencies, or graph-dependencies, where non-adjacent vertices correspond to independent random variables. Both approaches have their own limitations, the former requiring a temporal ordered structure, and the latter lacking a way to quantify the strength of inter-dependencies. In this work, we bridge these two lines of work by proposing a framework where dependencies decay with graph distance. We derive generalization bounds leveraging the online-to-PAC framework, by deriving a concentration result and introducing an online learning framework incorporating the graph structure. The resulting high-probability generalization guarantees depend on both the mixing rate and the graph's chromatic number.
Abstract:We study the generalization error of statistical learning algorithms in a non-i.i.d. setting, where the training data is sampled from a stationary mixing process. We develop an analytic framework for this scenario based on a reduction to online learning with delayed feedback. In particular, we show that the existence of an online learning algorithm with bounded regret (against a fixed statistical learning algorithm in a specially constructed game of online learning with delayed feedback) implies low generalization error of said statistical learning method even if the data sequence is sampled from a mixing time series. The rates demonstrate a trade-off between the amount of delay in the online learning game and the degree of dependence between consecutive data points, with near-optimal rates recovered in a number of well-studied settings when the delay is tuned appropriately as a function of the mixing time of the process.
Abstract:We establish explicit dynamics for neural networks whose training objective has a regularising term that constrains the parameters to remain close to their initial value. This keeps the network in a lazy training regime, where the dynamics can be linearised around the initialisation. The standard neural tangent kernel (NTK) governs the evolution during the training in the infinite-width limit, although the regularisation yields an additional term appears in the differential equation describing the dynamics. This setting provides an appropriate framework to study the evolution of wide networks trained to optimise generalisation objectives such as PAC-Bayes bounds, and hence potentially contribute to a deeper theoretical understanding of such networks.
Abstract:We establish a disintegrated PAC-Bayesian bound, for classifiers that are trained via continuous-time (non-stochastic) gradient descent. Contrarily to what is standard in the PAC-Bayesian setting, our result applies to a training algorithm that is deterministic, conditioned on a random initialisation, without requiring any $\textit{de-randomisation}$ step. We provide a broad discussion of the main features of the bound that we propose, and we study analytically and empirically its behaviour on linear models, finding promising results.
Abstract:This work discusses how to derive upper bounds for the expected generalisation error of supervised learning algorithms by means of the chaining technique. By developing a general theoretical framework, we establish a duality between generalisation bounds based on the regularity of the loss function, and their chained counterparts, which can be obtained by lifting the regularity assumption from the loss onto its gradient. This allows us to re-derive the chaining mutual information bound from the literature, and to obtain novel chained information-theoretic generalisation bounds, based on the Wasserstein distance and other probability metrics. We show on some toy examples that the chained generalisation bound can be significantly tighter than its standard counterpart, particularly when the distribution of the hypotheses selected by the algorithm is very concentrated. Keywords: Generalisation bounds; Chaining; Information-theoretic bounds; Mutual information; Wasserstein distance; PAC-Bayes.
Abstract:Recent studies have empirically investigated different methods to train a stochastic classifier by optimising a PAC-Bayesian bound via stochastic gradient descent. Most of these procedures need to replace the misclassification error with a surrogate loss, leading to a mismatch between the optimisation objective and the actual generalisation bound. The present paper proposes a novel training algorithm that optimises the PAC-Bayesian bound, without relying on any surrogate loss. Empirical results show that the bounds obtained with this approach are tighter than those found in the literature.
Abstract:The limit of infinite width allows for substantial simplifications in the analytical study of overparameterized neural networks. With a suitable random initialization, an extremely large network is well approximated by a Gaussian process, both before and during training. In the present work, we establish a similar result for a simple stochastic architecture whose parameters are random variables. The explicit evaluation of the output distribution allows for a PAC-Bayesian training procedure that directly optimizes the generalization bound. For a large but finite-width network, we show empirically on MNIST that this training approach can outperform standard PAC-Bayesian methods.
Abstract:Deep ResNet architectures have achieved state of the art performance on many tasks. While they solve the problem of gradient vanishing, they might suffer from gradient exploding as the depth becomes large (Yang et al. 2017). Moreover, recent results have shown that ResNet might lose expressivity as the depth goes to infinity (Yang et al. 2017, Hayou et al. 2019). To resolve these issues, we introduce a new class of ResNet architectures, called Stable ResNet, that have the property of stabilizing the gradient while ensuring expressivity in the infinite depth limit.