Abstract:In this paper, we present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process. Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix. Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node. Using the Laplacian spectrum allows us to naturally capture the structural characteristics of the graph and work directly in the node space while avoiding the quadratic complexity bottleneck that limits the applicability of other methods. This is achieved by truncating the spectrum, which as we show in our experiments results in a faster yet accurate generative process. An extensive set of experiments on both synthetic and real world graphs demonstrates the strengths of our model against state-of-the-art alternatives.
Abstract:Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning. In this paper, we propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features. To this end, we extract the distribution of features in the egonet for each local neighbourhood and compare them against a set of learned label distributions by taking the histogram intersection kernel. The similarity information is then propagated to other nodes in the network, effectively creating a message passing-like mechanism where the message is determined by the ensemble of the features. We perform an ablation study to evaluate the network's performance under different choices of its hyper-parameters. Finally, we test our model on standard graph classification and regression benchmarks, and we find that it outperforms widely used alternative approaches, including both graph kernels and graph neural networks.
Abstract:Whole Slide Images (WSIs) present a challenging computer vision task due to their gigapixel size and presence of numerous artefacts. Yet they are a valuable resource for patient diagnosis and stratification, often representing the gold standard for diagnostic tasks. Real-world clinical datasets tend to come as sets of heterogeneous WSIs with labels present at the patient-level, with poor to no annotations. Weakly supervised attention-based multiple instance learning approaches have been developed in recent years to address these challenges, but can fail to resolve both long and short-range dependencies. Here we propose an end-to-end multi-stain self-attention graph (MUSTANG) multiple instance learning pipeline, which is designed to solve a weakly-supervised gigapixel multi-image classification task, where the label is assigned at the patient-level, but no slide-level labels or region annotations are available. The pipeline uses a self-attention based approach by restricting the operations to a highly sparse k-Nearest Neighbour Graph of embedded WSI patches based on the Euclidean distance. We show this approach achieves a state-of-the-art F1-score/AUC of 0.89/0.92, outperforming the widely used CLAM model. Our approach is highly modular and can easily be modified to suit different clinical datasets, as it only requires a patient-level label without annotations and accepts WSI sets of different sizes, as the graphs can be of varying sizes and structures. The source code can be found at https://github.com/AmayaGS/MUSTANG.
Abstract:2D image understanding is a complex problem within Computer Vision, but it holds the key to providing human level scene comprehension. It goes further than identifying the objects in an image, and instead it attempts to understand the scene. Solutions to this problem form the underpinning of a range of tasks, including image captioning, Visual Question Answering (VQA), and image retrieval. Graphs provide a natural way to represent the relational arrangement between objects in an image, and thus in recent years Graph Neural Networks (GNNs) have become a standard component of many 2D image understanding pipelines, becoming a core architectural component especially in the VQA group of tasks. In this survey, we review this rapidly evolving field and we provide a taxonomy of graph types used in 2D image understanding approaches, a comprehensive list of the GNN models used in this domain, and a roadmap of future potential developments. To the best of our knowledge, this is the first comprehensive survey that covers image captioning, visual question answering, and image retrieval techniques that focus on using GNNs as the main part of their architecture.
Abstract:The convolution operator at the core of many modern neural architectures can effectively be seen as performing a dot product between an input matrix and a filter. While this is readily applicable to data such as images, which can be represented as regular grids in the Euclidean space, extending the convolution operator to work on graphs proves more challenging, due to their irregular structure. In this paper, we propose to use graph kernels, i.e., kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain. This allows us to define an entirely structural model that does not require computing the embedding of the input graph. Our architecture allows to plug-in any type and number of graph kernels and has the added benefit of providing some interpretability in terms of the structural masks that are learned during the training process, similarly to what happens for convolutional masks in traditional convolutional neural networks. We perform an extensive ablation study to investigate the impact of the model hyper-parameters and we show that our model achieves competitive performance on standard graph classification datasets.
Abstract:The semantic segmentation of parts of objects in the wild is a challenging task in which multiple instances of objects and multiple parts within those objects must be detected in the scene. This problem remains nowadays very marginally explored, despite its fundamental importance towards detailed object understanding. In this work, we propose a novel framework combining higher object-level context conditioning and part-level spatial relationships to address the task. To tackle object-level ambiguity, a class-conditioning module is introduced to retain class-level semantics when learning parts-level semantics. In this way, mid-level features carry also this information prior to the decoding stage. To tackle part-level ambiguity and localization we propose a novel adjacency graph-based module that aims at matching the relative spatial relationships between ground truth and predicted parts. The experimental evaluation on the Pascal-Part dataset shows that we achieve state-of-the-art results on this task.
Abstract:In this paper, we develop a new Quantum Spatial Graph Convolutional Neural Network (QSGCNN) model that can directly learn a classification function for graphs of arbitrary sizes. Unlike state-of-the-art Graph Convolutional Neural Network (GCN) models, the proposed QSGCNN model incorporates the process of identifying transitive aligned vertices between graphs, and transforms arbitrary sized graphs into fixed-sized aligned vertex grid structures. To further learn representative graph characteristics, a new quantum spatial graph convolution is proposed and employed to extract multi-scale vertex features, in terms of quantum passing information between grid vertices of each graph. Since the quantum spatial convolution preserves the property of the input grid structures, the proposed QSGCNN model allows to directly employ the traditional convolutional neural network to further learn from the global graph topology, providing an end-to-end deep learning architecture that integrates the graph representation and learning in the quantum spatial graph convolution layer and the traditional convolutional layer for graph classifications. We demonstrate the effectiveness of the proposed QSGCNN model in terms of the theoretical connections to state-of-the-art methods. The proposed QSGCNN model addresses the shortcomings of information loss and imprecise information representation arising in existing GCN models associated with SortPooling or SumPooling layers. Experimental results on benchmark graph classification datasets demonstrate the effectiveness of the proposed QSGCNN model.