Abstract:This study evaluates the generalisation capabilities of state-of-the-art histopathology foundation models on out-of-distribution multi-stain autoimmune Immunohistochemistry datasets. We compare 13 feature extractor models, including ImageNet-pretrained networks, and histopathology foundation models trained on both public and proprietary data, on Rheumatoid Arthritis subtyping and Sjogren's Disease detection tasks. Using a simple Attention-Based Multiple Instance Learning classifier, we assess the transferability of learned representations from cancer H&E images to autoimmune IHC images. Contrary to expectations, histopathology-pretrained models did not significantly outperform ImageNet-pretrained models. Furthermore, there was evidence of both autoimmune feature misinterpretation and biased feature importance. Our findings highlight the challenges in transferring knowledge from cancer to autoimmune histopathology and emphasise the need for careful evaluation of AI models across diverse histopathological tasks. The code to run this benchmark is available at https://github.com/AmayaGS/ImmunoHistoBench.
Abstract:Whole Slide Images (WSIs) present a challenging computer vision task due to their gigapixel size and presence of numerous artefacts. Yet they are a valuable resource for patient diagnosis and stratification, often representing the gold standard for diagnostic tasks. Real-world clinical datasets tend to come as sets of heterogeneous WSIs with labels present at the patient-level, with poor to no annotations. Weakly supervised attention-based multiple instance learning approaches have been developed in recent years to address these challenges, but can fail to resolve both long and short-range dependencies. Here we propose an end-to-end multi-stain self-attention graph (MUSTANG) multiple instance learning pipeline, which is designed to solve a weakly-supervised gigapixel multi-image classification task, where the label is assigned at the patient-level, but no slide-level labels or region annotations are available. The pipeline uses a self-attention based approach by restricting the operations to a highly sparse k-Nearest Neighbour Graph of embedded WSI patches based on the Euclidean distance. We show this approach achieves a state-of-the-art F1-score/AUC of 0.89/0.92, outperforming the widely used CLAM model. Our approach is highly modular and can easily be modified to suit different clinical datasets, as it only requires a patient-level label without annotations and accepts WSI sets of different sizes, as the graphs can be of varying sizes and structures. The source code can be found at https://github.com/AmayaGS/MUSTANG.
Abstract:Rheumatoid Arthritis (RA) is a chronic, autoimmune disease which primarily affects the joint's synovial tissue. It is a highly heterogeneous disease, with wide cellular and molecular variability observed in synovial tissues. Over the last two decades, the methods available for their study have advanced considerably. In particular, Immunohistochemistry stains are well suited to highlighting the functional organisation of samples. Yet, analysis of IHC-stained synovial tissue samples is still overwhelmingly done manually and semi-quantitatively by expert pathologists. This is because in addition to the fragmented nature of IHC stained synovial tissue, there exist wide variations in intensity and colour, strong clinical centre batch effect, as well as the presence of many undesirable artefacts present in gigapixel Whole Slide Images (WSIs), such as water droplets, pen annotation, folded tissue, blurriness, etc. There is therefore a strong need for a robust, repeatable automated tissue segmentation algorithm which can cope with this variability and provide support to imaging pipelines. We train a UNET on a hand-curated, heterogeneous real-world multi-centre clinical dataset R4RA, which contains multiple types of IHC staining. The model obtains a DICE score of 0.865 and successfully segments different types of IHC staining, as well as dealing with variance in colours, intensity and common WSIs artefacts from the different clinical centres. It can be used as the first step in an automated image analysis pipeline for synovial tissue samples stained with IHC, increasing speed, reproducibility and robustness.