Abstract:Machine Translation Quality Estimation (QE) is the task of evaluating translation output in the absence of human-written references. Due to the scarcity of human-labeled QE data, previous works attempted to utilize the abundant unlabeled parallel corpora to produce additional training data with pseudo labels. In this paper, we demonstrate a significant gap between parallel data and real QE data: for QE data, it is strictly guaranteed that the source side is original texts and the target side is translated (namely translationese). However, for parallel data, it is indiscriminate and the translationese may occur on either source or target side. We compare the impact of parallel data with different translation directions in QE data augmentation, and find that using the source-original part of parallel corpus consistently outperforms its target-original counterpart. Moreover, since the WMT corpus lacks direction information for each parallel sentence, we train a classifier to distinguish source- and target-original bitext, and carry out an analysis of their difference in both style and domain. Together, these findings suggest using source-original parallel data for QE data augmentation, which brings a relative improvement of up to 4.0% and 6.4% compared to undifferentiated data on sentence- and word-level QE tasks respectively.
Abstract:Neural networks are vulnerable to adversarial examples, which are malicious inputs crafted to fool pre-trained models. Adversarial examples often exhibit black-box attacking transferability, which allows that adversarial examples crafted for one model can fool another model. However, existing black-box attack methods require samples from the training data distribution to improve the transferability of adversarial examples across different models. Because of the data dependence, the fooling ability of adversarial perturbations is only applicable when training data are accessible. In this paper, we present a data-free method for crafting adversarial perturbations that can fool a target model without any knowledge about the training data distribution. In the practical setting of a black-box attack scenario where attackers do not have access to target models and training data, our method achieves high fooling rates on target models and outperforms other universal adversarial perturbation methods. Our method empirically shows that current deep learning models are still at risk even when the attackers do not have access to training data.
Abstract:Typical person re-identification (re-ID) methods train a deep CNN to extract deep features and combine them with a distance metric for the final evaluation. In this work, we focus on exploiting the full information encoded in the deep feature to boost the re-ID performance. First, we propose a Deep Feature Fusion (DFF) method to exploit the diverse information embedded in a deep feature. DFF treats each sub-feature as an information carrier and employs a diffusion process to exchange their information. Second, we propose an Adaptive Re-Ranking (ARR) method to exploit the contextual information encoded in the features of neighbors. ARR utilizes the contextual information to re-rank the retrieval results in an iterative manner. Particularly, it adds more contextual information after each iteration automatically to consider more matches. Third, we propose a strategy that combines DFF and ARR to enhance the performance. Extensive comparative evaluations demonstrate the superiority of the proposed methods on three large benchmarks.