Abstract:Automatic radiology report generation can significantly benefit the labor-intensive process of report writing by radiologists, especially for 3D radiographs like CT scans, which are crucial for broad clinical diagnostics yet underexplored compared to 2D radiographs. Existing methods often handle 3D volumes either slice-wise or with aggressive downsampling due to current GPU memory limitations, which results in a loss of the inherent 3D nature and critical details. To overcome these issues, we introduce a novel framework that efficiently and effectively generates radiology reports for high-resolution (HR) 3D volumes, based on large language models (LLMs). Specifically, our framework utilizes low-resolution (LR) visual tokens as queries to mine information from HR tokens, preserving detailed HR information while reducing computational costs by only processing HR informed LR visual queries. Further benefiting the field, we curate and release BIMCV-RG, a new dataset with 5,328 HR 3D volumes and paired reports, establishing the first benchmarks for report generation from 3D HR medical images. Our method consistently surpasses existing methods on this benchmark across three different settings: normal-resolution, high-resolution inputs, and zero-shot domain transfer, all at an acceptable computational cost, trainable on a single A100-80G.
Abstract:Currently, the field of structure-based drug design is dominated by three main types of algorithms: search-based algorithms, deep generative models, and reinforcement learning. While existing works have typically focused on comparing models within a single algorithmic category, cross-algorithm comparisons remain scarce. In this paper, to fill the gap, we establish a benchmark to evaluate the performance of sixteen models across these different algorithmic foundations by assessing the pharmaceutical properties of the generated molecules and their docking affinities with specified target proteins. We highlight the unique advantages of each algorithmic approach and offer recommendations for the design of future SBDD models. We emphasize that 1D/2D ligand-centric drug design methods can be used in SBDD by treating the docking function as a black-box oracle, which is typically neglected. The empirical results show that 1D/2D methods achieve competitive performance compared with 3D-based methods that use the 3D structure of the target protein explicitly. Also, AutoGrow4, a 2D molecular graph-based genetic algorithm, dominates SBDD in terms of optimization ability. The relevant code is available in https://github.com/zkysfls/2024-sbdd-benchmark.