Abstract:The recent past has witnessed a notable surge in on-demand food delivery (OFD) services, offering delivery fulfillment within dozens of minutes after an order is placed. In OFD, pooling multiple orders for simultaneous delivery in real-time order assignment is a pivotal efficiency source, which may in turn extend delivery time. Constructing high-quality order pooling to harmonize platform efficiency with the experiences of consumers and couriers, is crucial to OFD platforms. However, the complexity and real-time nature of order assignment, making extensive calculations impractical, significantly limit the potential for order consolidation. Moreover, offline environment is frequently riddled with unknown factors, posing challenges for the platform's perceptibility and pooling decisions. Nevertheless, delivery behaviors of skilled couriers (SCs) who know the environment well, can improve system awareness and effectively inform decisions. Hence a SC delivery network (SCDN) is constructed, based on an enhanced attributed heterogeneous network embedding approach tailored for OFD. It aims to extract features from rich temporal and spatial information, and uncover the latent potential for order combinations embedded within SC trajectories. Accordingly, the vast search space of order assignment can be effectively pruned through scalable similarity calculations of low-dimensional vectors, making comprehensive and high-quality pooling outcomes more easily identified in real time. SCDN has now been deployed in Meituan dispatch system. Online tests reveal that with SCDN, the pooling quality and extent have been greatly improved. And our system can boost couriers'efficiency by 45-55% during noon peak hours, while upholding the timely delivery commitment.
Abstract:Online meal delivery is undergoing explosive growth, as this service is becoming increasingly popular. A meal delivery platform aims to provide excellent and stable services for customers and restaurants. However, in reality, several hundred thousand orders are canceled per day in the Meituan meal delivery platform since they are not accepted by the crowd soucing drivers. The cancellation of the orders is incredibly detrimental to the customer's repurchase rate and the reputation of the Meituan meal delivery platform. To solve this problem, a certain amount of specific funds is provided by Meituan's business managers to encourage the crowdsourcing drivers to accept more orders. To make better use of the funds, in this work, we propose a framework to deal with the multi-stage bonus allocation problem for a meal delivery platform. The objective of this framework is to maximize the number of accepted orders within a limited bonus budget. This framework consists of a semi-black-box acceptance probability model, a Lagrangian dual-based dynamic programming algorithm, and an online allocation algorithm. The semi-black-box acceptance probability model is employed to forecast the relationship between the bonus allocated to order and its acceptance probability, the Lagrangian dual-based dynamic programming algorithm aims to calculate the empirical Lagrangian multiplier for each allocation stage offline based on the historical data set, and the online allocation algorithm uses the results attained in the offline part to calculate a proper delivery bonus for each order. To verify the effectiveness and efficiency of our framework, both offline experiments on a real-world data set and online A/B tests on the Meituan meal delivery platform are conducted. Our results show that using the proposed framework, the total order cancellations can be decreased by more than 25\% in reality.