Abstract:Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.
Abstract:Using generative adversarial network (GAN)\cite{RN90} for data enhancement of medical images is significantly helpful for many computer-aided diagnosis (CAD) tasks. A new attack called CT-GAN has emerged. It can inject or remove lung cancer lesions to CT scans. Because the tampering region may even account for less than 1\% of the original image, even state-of-the-art methods are challenging to detect the traces of such tampering. This paper proposes a cascade framework to detect GAN-based medical image small region forgery like CT-GAN. In the local detection stage, we train the detector network with small sub-images so that interference information in authentic regions will not affect the detector. We use depthwise separable convolution and residual to prevent the detector from over-fitting and enhance the ability to find forged regions through the attention mechanism. The detection results of all sub-images in the same image will be combined into a heatmap. In the global classification stage, using gray level co-occurrence matrix (GLCM) can better extract features of the heatmap. Because the shape and size of the tampered area are uncertain, we train PCA and SVM methods for classification. Our method can classify whether a CT image has been tampered and locate the tampered position. Sufficient experiments show that our method can achieve excellent performance.