Abstract:Most recent works on optical flow use convex upsampling as the last step to obtain high-resolution flow. In this work, we show and discuss several issues and limitations of this currently widely adopted convex upsampling approach. We propose a series of changes, in an attempt to resolve current issues. First, we propose to decouple the weights for the final convex upsampler, making it easier to find the correct convex combination. For the same reason, we also provide extra contextual features to the convex upsampler. Then, we increase the convex mask size by using an attention-based alternative convex upsampler; Transformers for Convex Upsampling. This upsampler is based on the observation that convex upsampling can be reformulated as attention, and we propose to use local attention masks as a drop-in replacement for convex masks to increase the mask size. We provide empirical evidence that a larger mask size increases the likelihood of the existence of the convex combination. Lastly, we propose an alternative training scheme to remove bilinear interpolation artifacts from the model output. Our proposed ideas could theoretically be applied to almost every current state-of-the-art optical flow architecture. On the FlyingChairs + FlyingThings3D training setting we reduce the Sintel Clean training end-point-error of RAFT from 1.42 to 1.26, GMA from 1.31 to 1.18, and that of FlowFormer from 0.94 to 0.90, by solely adapting the convex upsampler.
Abstract:Extracting physical dynamical system parameters from videos is of great interest to applications in natural science and technology. The state-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets. Such datasets require labels, which are difficult to acquire. While some unsupervised techniques -- which depend on frame prediction -- exist, they suffer from long training times, instability under different initializations, and are limited to hand-picked motion problems. In this work, we propose a method to estimate the physical parameters of any known, continuous governing equation from single videos; our solution is suitable for different dynamical systems beyond motion and is robust to initialization compared to previous approaches. Moreover, we remove the need for frame prediction by implementing a KL-divergence-based loss function in the latent space, which avoids convergence to trivial solutions and reduces model size and compute.
Abstract:Spiking Neural Networks (SNNs) and neuromorphic computing offer bio-inspired advantages such as sparsity and ultra-low power consumption, providing a promising alternative to conventional networks. However, training deep SNNs from scratch remains a challenge, as SNNs process and transmit information by quantizing the real-valued membrane potentials into binary spikes. This can lead to information loss and vanishing spikes in deeper layers, impeding effective training. While weight initialization is known to be critical for training deep neural networks, what constitutes an effective initial state for a deep SNN is not well-understood. Existing weight initialization methods designed for conventional networks (ANNs) are often applied to SNNs without accounting for their distinct computational properties. In this work we derive an optimal weight initialization method specifically tailored for SNNs, taking into account the quantization operation. We show theoretically that, unlike standard approaches, this method enables the propagation of activity in deep SNNs without loss of spikes. We demonstrate this behavior in numerical simulations of SNNs with up to 100 layers across multiple time steps. We present an in-depth analysis of the numerical conditions, regarding layer width and neuron hyperparameters, which are necessary to accurately apply our theoretical findings. Furthermore, our experiments on MNIST demonstrate higher accuracy and faster convergence when using the proposed weight initialization scheme. Finally, we show that the newly introduced weight initialization is robust against variations in several network and neuron hyperparameters.
Abstract:Event cameras offer low-power visual sensing capabilities ideal for edge-device applications. However, their high event rate, driven by high temporal details, can be restrictive in terms of bandwidth and computational resources. In edge AI applications, determining the minimum amount of events for specific tasks can allow reducing the event rate to improve bandwidth, memory, and processing efficiency. In this paper, we study the effect of event subsampling on the accuracy of event data classification using convolutional neural network (CNN) models. Surprisingly, across various datasets, the number of events per video can be reduced by an order of magnitude with little drop in accuracy, revealing the extent to which we can push the boundaries in accuracy vs. event rate trade-off. Additionally, we also find that lower classification accuracy in high subsampling rates is not solely attributable to information loss due to the subsampling of the events, but that the training of CNNs can be challenging in highly subsampled scenarios, where the sensitivity to hyperparameters increases. We quantify training instability across multiple event-based classification datasets using a novel metric for evaluating the hyperparameter sensitivity of CNNs in different subsampling settings. Finally, we analyze the weight gradients of the network to gain insight into this instability.
Abstract:Previous work shows that humans tend to prefer large bounding boxes over small bounding boxes with the same IoU. However, we show here that commonly used object detectors predict large and small boxes equally often. In this work, we investigate how to align automatically detected object boxes with human preference and study whether this improves human quality perception. We evaluate the performance of three commonly used object detectors through a user study (N = 123). We find that humans prefer object detections that are upscaled with factors of 1.5 or 2, even if the corresponding AP is close to 0. Motivated by this result, we propose an asymmetric bounding box regression loss that encourages large over small predicted bounding boxes. Our evaluation study shows that object detectors fine-tuned with the asymmetric loss are better aligned with human preference and are preferred over fixed scaling factors. A qualitative evaluation shows that human preference might be influenced by some object characteristics, like object shape.
Abstract:Diverse and realistic floor plan data are essential for the development of useful computer-aided methods in architectural design. Today's large-scale floor plan datasets predominantly feature simple floor plan layouts, typically representing single-apartment dwellings only. To compensate for the mismatch between current datasets and the real world, we develop \textbf{Modified Swiss Dwellings} (MSD) -- the first large-scale floor plan dataset that contains a significant share of layouts of multi-apartment dwellings. MSD features over 5.3K floor plans of medium- to large-scale building complexes, covering over 18.9K distinct apartments. We validate that existing approaches for floor plan generation, while effective in simpler scenarios, cannot yet seamlessly address the challenges posed by MSD. Our benchmark calls for new research in floor plan machine understanding. Code and data are open.
Abstract:The fourth edition of the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" workshop features two data-impaired challenges. These challenges address the problem of training deep learning models for computer vision tasks with limited data. Participants are limited to training models from scratch using a low number of training samples and are not allowed to use any form of transfer learning. We aim to stimulate the development of novel approaches that incorporate inductive biases to improve the data efficiency of deep learning models. Significant advancements are made compared to the provided baselines, where winning solutions surpass the baselines by a considerable margin in both tasks. As in previous editions, these achievements are primarily attributed to heavy use of data augmentation policies and large model ensembles, though novel prior-based methods seem to contribute more to successful solutions compared to last year. This report highlights the key aspects of the challenges and their outcomes.
Abstract:We propose an end-to-end approach for gaze target detection: predicting a head-target connection between individuals and the target image regions they are looking at. Most of the existing methods use independent components such as off-the-shelf head detectors or have problems in establishing associations between heads and gaze targets. In contrast, we investigate an end-to-end multi-person Gaze target detection framework with Heads and Targets Association (GazeHTA), which predicts multiple head-target instances based solely on input scene image. GazeHTA addresses challenges in gaze target detection by (1) leveraging a pre-trained diffusion model to extract scene features for rich semantic understanding, (2) re-injecting a head feature to enhance the head priors for improved head understanding, and (3) learning a connection map as the explicit visual associations between heads and gaze targets. Our extensive experimental results demonstrate that GazeHTA outperforms state-of-the-art gaze target detection methods and two adapted diffusion-based baselines on two standard datasets.
Abstract:Bounding boxes are often used to communicate automatic object detection results to humans, aiding humans in a multitude of tasks. We investigate the relationship between bounding box localization errors and human task performance. We use observer performance studies on a visual multi-object counting task to measure both human trust and performance with different levels of bounding box accuracy. The results show that localization errors have no significant impact on human accuracy or trust in the system. Recall and precision errors impact both human performance and trust, suggesting that optimizing algorithms based on the F1 score is more beneficial in human-computer tasks. Lastly, the paper offers an improvement on bounding boxes in multi-object counting tasks with center dots, showing improved performance and better resilience to localization inaccuracy.
Abstract:Quantitative cardiac magnetic resonance imaging (MRI) is an increasingly important diagnostic tool for cardiovascular diseases. Yet, co-registration of all baseline images within the quantitative MRI sequence is essential for the accuracy and precision of quantitative maps. However, co-registering all baseline images from a quantitative cardiac MRI sequence remains a nontrivial task because of the simultaneous changes in intensity and contrast, in combination with cardiac and respiratory motion. To address the challenge, we propose a novel motion correction framework based on robust principle component analysis (rPCA) that decomposes quantitative cardiac MRI into low-rank and sparse components, and we integrate the groupwise CNN-based registration backbone within the rPCA framework. The low-rank component of rPCA corresponds to the quantitative mapping (i.e. limited degree of freedom in variation), while the sparse component corresponds to the residual motion, making it easier to formulate and solve the groupwise registration problem. We evaluated our proposed method on cardiac T1 mapping by the modified Look-Locker inversion recovery (MOLLI) sequence, both before and after the Gadolinium contrast agent administration. Our experiments showed that our method effectively improved registration performance over baseline methods without introducing rPCA, and reduced quantitative mapping error in both in-domain (pre-contrast MOLLI) and out-of-domain (post-contrast MOLLI) inference. The proposed rPCA framework is generic and can be integrated with other registration backbones.