Abstract:The emergence of large Vision-Language Models (VLMs) has recently established new baselines in image classification across multiple domains. However, the performance of VLMs in the specific task of artwork classification, particularly art style classification of paintings - a domain traditionally mastered by art historians - has not been explored yet. Artworks pose a unique challenge compared to natural images due to their inherently complex and diverse structures, characterized by variable compositions and styles. Art historians have long studied the unique aspects of artworks, with style prediction being a crucial component of their discipline. This paper investigates whether large VLMs, which integrate visual and textual data, can effectively predict the art historical attributes of paintings. We conduct an in-depth analysis of four VLMs, namely CLIP, LLaVA, OpenFlamingo, and GPT-4o, focusing on zero-shot classification of art style, author and time period using two public benchmarks of artworks. Additionally, we present ArTest, a well-curated test set of artworks, including pivotal paintings studied by art historians.
Abstract:Assessing the aesthetic quality of artistic images presents unique challenges due to the subjective nature of aesthetics and the complex visual characteristics inherent to artworks. Basic data augmentation techniques commonly applied to natural images in computer vision may not be suitable for art images in aesthetic evaluation tasks, as they can change the composition of the art images. In this paper, we explore the impact of local and global data augmentation techniques on artistic image aesthetic assessment (IAA). We introduce BackFlip, a local data augmentation technique designed specifically for artistic IAA. We evaluate the performance of BackFlip across three artistic image datasets and four neural network architectures, comparing it with the commonly used data augmentation techniques. Then, we analyze the effects of components within the BackFlip pipeline through an ablation study. Our findings demonstrate that local augmentations, such as BackFlip, tend to outperform global augmentations on artistic IAA in most cases, probably because they do not perturb the composition of the art images. These results emphasize the importance of considering both local and global augmentations in future computational aesthetics research.
Abstract:Previous work shows that humans tend to prefer large bounding boxes over small bounding boxes with the same IoU. However, we show here that commonly used object detectors predict large and small boxes equally often. In this work, we investigate how to align automatically detected object boxes with human preference and study whether this improves human quality perception. We evaluate the performance of three commonly used object detectors through a user study (N = 123). We find that humans prefer object detections that are upscaled with factors of 1.5 or 2, even if the corresponding AP is close to 0. Motivated by this result, we propose an asymmetric bounding box regression loss that encourages large over small predicted bounding boxes. Our evaluation study shows that object detectors fine-tuned with the asymmetric loss are better aligned with human preference and are preferred over fixed scaling factors. A qualitative evaluation shows that human preference might be influenced by some object characteristics, like object shape.
Abstract:Bounding boxes are often used to communicate automatic object detection results to humans, aiding humans in a multitude of tasks. We investigate the relationship between bounding box localization errors and human task performance. We use observer performance studies on a visual multi-object counting task to measure both human trust and performance with different levels of bounding box accuracy. The results show that localization errors have no significant impact on human accuracy or trust in the system. Recall and precision errors impact both human performance and trust, suggesting that optimizing algorithms based on the F1 score is more beneficial in human-computer tasks. Lastly, the paper offers an improvement on bounding boxes in multi-object counting tasks with center dots, showing improved performance and better resilience to localization inaccuracy.
Abstract:Color is a crucial visual cue readily exploited by Convolutional Neural Networks (CNNs) for object recognition. However, CNNs struggle if there is data imbalance between color variations introduced by accidental recording conditions. Color invariance addresses this issue but does so at the cost of removing all color information, which sacrifices discriminative power. In this paper, we propose Color Equivariant Convolutions (CEConvs), a novel deep learning building block that enables shape feature sharing across the color spectrum while retaining important color information. We extend the notion of equivariance from geometric to photometric transformations by incorporating parameter sharing over hue-shifts in a neural network. We demonstrate the benefits of CEConvs in terms of downstream performance to various tasks and improved robustness to color changes, including train-test distribution shifts. Our approach can be seamlessly integrated into existing architectures, such as ResNets, and offers a promising solution for addressing color-based domain shifts in CNNs.
Abstract:Predicting which specific parts of a video users will replay is important for several applications, including targeted advertisement placement on video platforms and assisting video creators. In this work, we explore whether it is possible to predict the Most Replayed (MR) data from YouTube videos. To this end, we curate a large video benchmark, the YTMR500 dataset, which comprises 500 YouTube videos with MR data annotations. We evaluate Deep Learning (DL) models of varying complexity on our dataset and perform an extensive ablation study. In addition, we conduct a user study to estimate the human performance on MR data prediction. Our results show that, although by a narrow margin, all the evaluated DL models outperform random predictions. Additionally, they exceed human-level accuracy. This suggests that predicting the MR data is a difficult task that can be enhanced through the assistance of DL. Finally, we believe that DL performance on MR data prediction can be further improved, for example, by using multi-modal learning. We encourage the research community to use our benchmark dataset to further investigate automatic MR data prediction.
Abstract:In temporal action localization, given an input video, the goal is to predict which actions it contains, where they begin, and where they end. Training and testing current state-of-the-art deep learning models requires access to large amounts of data and computational power. However, gathering such data is challenging and computational resources might be limited. This work explores and measures how current deep temporal action localization models perform in settings constrained by the amount of data or computational power. We measure data efficiency by training each model on a subset of the training set. We find that TemporalMaxer outperforms other models in data-limited settings. Furthermore, we recommend TriDet when training time is limited. To test the efficiency of the models during inference, we pass videos of different lengths through each model. We find that TemporalMaxer requires the least computational resources, likely due to its simple architecture.
Abstract:Previous work on long-term video action recognition relies on deep 3D-convolutional models that have a large temporal receptive field (RF). We argue that these models are not always the best choice for temporal modeling in videos. A large temporal receptive field allows the model to encode the exact sub-action order of a video, which causes a performance decrease when testing videos have a different sub-action order. In this work, we investigate whether we can improve the model robustness to the sub-action order by shrinking the temporal receptive field of action recognition models. For this, we design Video BagNet, a variant of the 3D ResNet-50 model with the temporal receptive field size limited to 1, 9, 17 or 33 frames. We analyze Video BagNet on synthetic and real-world video datasets and experimentally compare models with varying temporal receptive fields. We find that short receptive fields are robust to sub-action order changes, while larger temporal receptive fields are sensitive to the sub-action order.
Abstract:Many real-world applications, from sport analysis to surveillance, benefit from automatic long-term action recognition. In the current deep learning paradigm for automatic action recognition, it is imperative that models are trained and tested on datasets and tasks that evaluate if such models actually learn and reason over long-term information. In this work, we propose a method to evaluate how suitable a video dataset is to evaluate models for long-term action recognition. To this end, we define a long-term action as excluding all the videos that can be correctly recognized using solely short-term information. We test this definition on existing long-term classification tasks on three popular real-world datasets, namely Breakfast, CrossTask and LVU, to determine if these datasets are truly evaluating long-term recognition. Our study reveals that these datasets can be effectively solved using shortcuts based on short-term information. Following this finding, we encourage long-term action recognition researchers to make use of datasets that need long-term information to be solved.
Abstract:The localization quality of automatic object detectors is typically evaluated by the Intersection over Union (IoU) score. In this work, we show that humans have a different view on localization quality. To evaluate this, we conduct a survey with more than 70 participants. Results show that for localization errors with the exact same IoU score, humans might not consider that these errors are equal, and express a preference. Our work is the first to evaluate IoU with humans and makes it clear that relying on IoU scores alone to evaluate localization errors might not be sufficient.