Abstract:Most recent works on optical flow use convex upsampling as the last step to obtain high-resolution flow. In this work, we show and discuss several issues and limitations of this currently widely adopted convex upsampling approach. We propose a series of changes, in an attempt to resolve current issues. First, we propose to decouple the weights for the final convex upsampler, making it easier to find the correct convex combination. For the same reason, we also provide extra contextual features to the convex upsampler. Then, we increase the convex mask size by using an attention-based alternative convex upsampler; Transformers for Convex Upsampling. This upsampler is based on the observation that convex upsampling can be reformulated as attention, and we propose to use local attention masks as a drop-in replacement for convex masks to increase the mask size. We provide empirical evidence that a larger mask size increases the likelihood of the existence of the convex combination. Lastly, we propose an alternative training scheme to remove bilinear interpolation artifacts from the model output. Our proposed ideas could theoretically be applied to almost every current state-of-the-art optical flow architecture. On the FlyingChairs + FlyingThings3D training setting we reduce the Sintel Clean training end-point-error of RAFT from 1.42 to 1.26, GMA from 1.31 to 1.18, and that of FlowFormer from 0.94 to 0.90, by solely adapting the convex upsampler.
Abstract:Color is a crucial visual cue readily exploited by Convolutional Neural Networks (CNNs) for object recognition. However, CNNs struggle if there is data imbalance between color variations introduced by accidental recording conditions. Color invariance addresses this issue but does so at the cost of removing all color information, which sacrifices discriminative power. In this paper, we propose Color Equivariant Convolutions (CEConvs), a novel deep learning building block that enables shape feature sharing across the color spectrum while retaining important color information. We extend the notion of equivariance from geometric to photometric transformations by incorporating parameter sharing over hue-shifts in a neural network. We demonstrate the benefits of CEConvs in terms of downstream performance to various tasks and improved robustness to color changes, including train-test distribution shifts. Our approach can be seamlessly integrated into existing architectures, such as ResNets, and offers a promising solution for addressing color-based domain shifts in CNNs.