Abstract:Diverse and realistic floor plan data are essential for the development of useful computer-aided methods in architectural design. Today's large-scale floor plan datasets predominantly feature simple floor plan layouts, typically representing single-apartment dwellings only. To compensate for the mismatch between current datasets and the real world, we develop \textbf{Modified Swiss Dwellings} (MSD) -- the first large-scale floor plan dataset that contains a significant share of layouts of multi-apartment dwellings. MSD features over 5.3K floor plans of medium- to large-scale building complexes, covering over 18.9K distinct apartments. We validate that existing approaches for floor plan generation, while effective in simpler scenarios, cannot yet seamlessly address the challenges posed by MSD. Our benchmark calls for new research in floor plan machine understanding. Code and data are open.
Abstract:We propose a simple yet effective metric that measures structural similarity between visual instances of architectural floor plans, without the need for learning. Qualitatively, our experiments show that the retrieval results are similar to deeply learned methods. Effectively comparing instances of floor plan data is paramount to the success of machine understanding of floor plan data, including the assessment of floor plan generative models and floor plan recommendation systems. Comparing visual floor plan images goes beyond a sole pixel-wise visual examination and is crucially about similarities and differences in the shapes and relations between subdivisions that compose the layout. Currently, deep metric learning approaches are used to learn a pair-wise vector representation space that closely mimics the structural similarity, in which the models are trained on similarity labels that are obtained by Intersection-over-Union (IoU). To compensate for the lack of structural awareness in IoU, graph-based approaches such as Graph Matching Networks (GMNs) are used, which require pairwise inference for comparing data instances, making GMNs less practical for retrieval applications. In this paper, an effective evaluation metric for judging the structural similarity of floor plans, coined SSIG (Structural Similarity by IoU and GED), is proposed based on both image and graph distances. In addition, an efficient algorithm is developed that uses SSIG to rank a large-scale floor plan database. Code will be openly available.