Abstract:This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Abstract:Speech disfluency commonly occurs in conversational and spontaneous speech. However, standard Automatic Speech Recognition (ASR) models struggle to accurately recognize these disfluencies because they are typically trained on fluent transcripts. Current research mainly focuses on detecting disfluencies within transcripts, overlooking their exact location and duration in the speech. Additionally, previous work often requires model fine-tuning and addresses limited types of disfluencies. In this work, we present an inference-only approach to augment any ASR model with the ability to detect open-set disfluencies. We first demonstrate that ASR models have difficulty transcribing speech disfluencies. Next, this work proposes a modified Connectionist Temporal Classification(CTC)-based forced alignment algorithm from \cite{kurzinger2020ctc} to predict word-level timestamps while effectively capturing disfluent speech. Additionally, we develop a model to classify alignment gaps between timestamps as either containing disfluent speech or silence. This model achieves an accuracy of 81.62% and an F1-score of 80.07%. We test the augmentation pipeline of alignment gap detection and classification on a disfluent dataset. Our results show that we captured 74.13% of the words that were initially missed by the transcription, demonstrating the potential of this pipeline for downstream tasks.
Abstract:Direct speech translation (ST) models often struggle with rare words. Incorrect translation of these words can have severe consequences, impacting translation quality and user trust. While rare word translation is inherently challenging for neural models due to sparse learning signals, real-world scenarios often allow access to translations of past recordings on similar topics. To leverage these valuable resources, we propose a retrieval-and-demonstration approach to enhance rare word translation accuracy in direct ST models. First, we adapt existing ST models to incorporate retrieved examples for rare word translation, which allows the model to benefit from prepended examples, similar to in-context learning. We then develop a cross-modal (speech-to-speech, speech-to-text, text-to-text) retriever to locate suitable examples. We demonstrate that standard ST models can be effectively adapted to leverage examples for rare word translation, improving rare word translation accuracy over the baseline by 17.6% with gold examples and 8.5% with retrieved examples. Moreover, our speech-to-speech retrieval approach outperforms other modalities and exhibits higher robustness to unseen speakers. Our code is publicly available (https://github.com/SiqiLii/Retrieve-and-Demonstration-ST).
Abstract:Recent advancements in NLP have resulted in models with specialized strengths, such as processing multimodal inputs or excelling in specific domains. However, real-world tasks, like multimodal translation, often require a combination of these strengths, such as handling both translation and image processing. While individual translation and vision models are powerful, they typically lack the ability to perform both tasks in a single system. Combining these models poses challenges, particularly due to differences in their vocabularies, which limit the effectiveness of traditional ensemble methods to post-generation techniques like N-best list re-ranking. In this work, we propose a novel zero-shot ensembling strategy that allows for the integration of different models during the decoding phase without the need for additional training. Our approach re-ranks beams during decoding by combining scores at the word level, using heuristics to predict when a word is completed. We demonstrate the effectiveness of this method in machine translation scenarios, showing that it enables the generation of translations that are both speech- and image-aware while also improving overall translation quality\footnote{We will release the code upon paper acceptance.}.
Abstract:Large Language Models (LLMs) are currently under exploration for various tasks, including Automatic Speech Recognition (ASR), Machine Translation (MT), and even End-to-End Speech Translation (ST). In this paper, we present KIT's offline submission in the constrained + LLM track by incorporating recently proposed techniques that can be added to any cascaded speech translation. Specifically, we integrate Mistral-7B\footnote{mistralai/Mistral-7B-Instruct-v0.1} into our system to enhance it in two ways. Firstly, we refine the ASR outputs by utilizing the N-best lists generated by our system and fine-tuning the LLM to predict the transcript accurately. Secondly, we refine the MT outputs at the document level by fine-tuning the LLM, leveraging both ASR and MT predictions to improve translation quality. We find that integrating the LLM into the ASR and MT systems results in an absolute improvement of $0.3\%$ in Word Error Rate and $0.65\%$ in COMET for tst2019 test set. In challenging test sets with overlapping speakers and background noise, we find that integrating LLM is not beneficial due to poor ASR performance. Here, we use ASR with chunked long-form decoding to improve context usage that may be unavailable when transcribing with Voice Activity Detection segmentation alone.
Abstract:With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4\% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.
Abstract:Human evaluation is a critical component in machine translation system development and has received much attention in text translation research. However, little prior work exists on the topic of human evaluation for speech translation, which adds additional challenges such as noisy data and segmentation mismatches. We take first steps to fill this gap by conducting a comprehensive human evaluation of the results of several shared tasks from the last International Workshop on Spoken Language Translation (IWSLT 2023). We propose an effective evaluation strategy based on automatic resegmentation and direct assessment with segment context. Our analysis revealed that: 1) the proposed evaluation strategy is robust and scores well-correlated with other types of human judgements; 2) automatic metrics are usually, but not always, well-correlated with direct assessment scores; and 3) COMET as a slightly stronger automatic metric than chrF, despite the segmentation noise introduced by the resegmentation step systems. We release the collected human-annotated data in order to encourage further investigation.
Abstract:Providing quality scores along with Machine Translation (MT) output, so-called reference-free Quality Estimation (QE), is crucial to inform users about the reliability of the translation. We propose a model-specific, unsupervised QE approach, termed $k$NN-QE, that extracts information from the MT model's training data using $k$-nearest neighbors. Measuring the performance of model-specific QE is not straightforward, since they provide quality scores on their own MT output, thus cannot be evaluated using benchmark QE test sets containing human quality scores on premade MT output. Therefore, we propose an automatic evaluation method that uses quality scores from reference-based metrics as gold standard instead of human-generated ones. We are the first to conduct detailed analyses and conclude that this automatic method is sufficient, and the reference-based MetricX-23 is best for the task.
Abstract:Finetuning pretrained models on downstream generation tasks often leads to catastrophic forgetting in zero-shot conditions. In this work, we focus on summarization and tackle the problem through the lens of language-independent representations. After training on monolingual summarization, we perform zero-shot transfer to new languages or language pairs. We first show naively finetuned models are highly language-specific in both output behavior and internal representations, resulting in poor zero-shot performance. Next, we propose query-key (QK) finetuning to decouple task-specific knowledge from the pretrained language generation abilities. Then, after showing downsides of the standard adversarial language classifier, we propose a balanced variant that more directly enforces language-agnostic representations. Moreover, our qualitative analyses show removing source language identity correlates to zero-shot summarization performance. Our code is openly available.
Abstract:Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks, but they have yet to attain state-of-the-art performance in Neural Machine Translation (NMT). Nevertheless, their significant performance in tasks demanding a broad understanding and contextual processing shows their potential for translation. To exploit these abilities, we investigate using LLM's for MT and explore recent parameter-efficient fine-tuning techniques. Surprisingly, our initial experiments find that fine-tuning for translation purposes even led to performance degradation. To overcome this, we propose an alternative approach: adapting LLM's as Automatic Post-Editors (APE) rather than direct translators. Building on the LLM's exceptional ability to process and generate lengthy sequences, we also propose extending our approach to document-level translation. We show that leveraging Low-Rank-Adapter fine-tuning for APE can yield significant improvements across both sentence and document-level metrics while generalizing to out-of-domain data. Most notably, we achieve a state-of-the-art accuracy rate of 89\% on the ContraPro test set, which specifically assesses the model's ability to resolve pronoun ambiguities when translating from English to German. Lastly, we investigate a practical scenario involving manual post-editing for document-level translation, where reference context is made available. Here, we demonstrate that leveraging human corrections can significantly reduce the number of edits required for subsequent translations\footnote{Interactive Demo for integrating manual feedback can be found \href{https://huggingface.co/spaces/skoneru/contextual_refinement_ende}{here}}