An emerging research direction in NMT involves the use of Quality Estimation (QE) models, which have demonstrated high correlations with human judgment and can enhance translations through Quality-Aware Decoding. Although several approaches have been proposed based on sampling multiple candidate translations, none have integrated these models directly into the decoding process. In this paper, we address this by proposing a novel token-level QE model capable of reliably scoring partial translations. We build a uni-directional QE model for this, as decoder models are inherently trained and efficient on partial sequences. We then present a decoding strategy that integrates the QE model for Quality-Aware decoding and demonstrate that the translation quality improves when compared to the N-best list re-ranking with state-of-the-art QE models (upto $1.39$ XCOMET-XXL $\uparrow$). Finally, we show that our approach provides significant benefits in document translation tasks, where the quality of N-best lists is typically suboptimal.