University of Edinburgh
Abstract:We present Legal Argument Reasoning (LAR), a novel task designed to evaluate the legal reasoning capabilities of Large Language Models (LLMs). The task requires selecting the correct next statement (from multiple choice options) in a chain of legal arguments from court proceedings, given the facts of the case. We constructed a dataset (LAR-ECHR) for this task using cases from the European Court of Human Rights (ECHR). We evaluated seven general-purpose LLMs on LAR-ECHR and found that (a) the ranking of the models is aligned with that of LegalBench, an established US-based legal reasoning benchmark, even though LAR-ECHR is based on EU law, (b) LAR-ECHR distinguishes top models more clearly, compared to LegalBench, (c) even the best model (GPT-4o) obtains 75.8% accuracy on LAR-ECHR, indicating significant potential for further model improvement. The process followed to construct LAR-ECHR can be replicated with cases from other legal systems.
Abstract:Diagnostic Captioning (DC) automatically generates a diagnostic text from one or more medical images (e.g., X-rays, MRIs) of a patient. Treated as a draft, the generated text may assist clinicians, by providing an initial estimation of the patient's condition, speeding up and helping safeguard the diagnostic process. The accuracy of a diagnostic text, however, strongly depends on how well the key medical conditions depicted in the images are expressed. We propose a new data-driven guided decoding method that incorporates medical information, in the form of existing tags capturing key conditions of the image(s), into the beam search of the diagnostic text generation process. We evaluate the proposed method on two medical datasets using four DC systems that range from generic image-to-text systems with CNN encoders and RNN decoders to pre-trained Large Language Models. The latter can also be used in few- and zero-shot learning scenarios. In most cases, the proposed mechanism improves performance with respect to all evaluation measures. We provide an open-source implementation of the proposed method at https://github.com/nlpaueb/dmmcs.
Abstract:Creating effective and reliable task-oriented dialog systems (ToDSs) is challenging, not only because of the complex structure of these systems, but also due to the scarcity of training data, especially when several modules need to be trained separately, each one with its own input/output training examples. Data augmentation (DA), whereby synthetic training examples are added to the training data, has been successful in other NLP systems, but has not been explored as extensively in ToDSs. We empirically evaluate the effectiveness of DA methods in an end-to-end ToDS setting, where a single system is trained to handle all processing stages, from user inputs to system outputs. We experiment with two ToDSs (UBAR, GALAXY) on two datasets (MultiWOZ, KVRET). We consider three types of DA methods (word-level, sentence-level, dialog-level), comparing eight DA methods that have shown promising results in ToDSs and other NLP systems. We show that all DA methods considered are beneficial, and we highlight the best ones, also providing advice to practitioners. We also introduce a more challenging few-shot cross-domain ToDS setting, reaching similar conclusions.
Abstract:The SemEval task on Argument Reasoning in Civil Procedure is challenging in that it requires understanding legal concepts and inferring complex arguments. Currently, most Large Language Models (LLM) excelling in the legal realm are principally purposed for classification tasks, hence their reasoning rationale is subject to contention. The approach we advocate involves using a powerful teacher-LLM (ChatGPT) to extend the training dataset with explanations and generate synthetic data. The resulting data are then leveraged to fine-tune a small student-LLM. Contrary to previous work, our explanations are not directly derived from the teacher's internal knowledge. Instead they are grounded in authentic human analyses, therefore delivering a superior reasoning signal. Additionally, a new `mutation' method generates artificial data instances inspired from existing ones. We are publicly releasing the explanations as an extension to the original dataset, along with the synthetic dataset and the prompts that were used to generate both. Our system ranked 15th in the SemEval competition. It outperforms its own teacher and can produce explanations aligned with the original human analyses, as verified by legal experts.
Abstract:NLP research has explored different neural model architectures and sizes, datasets, training objectives, and transfer learning techniques. However, the choice of optimizer during training has not been explored as extensively. Typically, some variant of Stochastic Gradient Descent (SGD) is employed, selected among numerous variants, using unclear criteria, often with minimal or no tuning of the optimizer's hyperparameters. Experimenting with five GLUE datasets, two models (DistilBERT and DistilRoBERTa), and seven popular optimizers (SGD, SGD with Momentum, Adam, AdaMax, Nadam, AdamW, and AdaBound), we find that when the hyperparameters of the optimizers are tuned, there is no substantial difference in test performance across the five more elaborate (adaptive) optimizers, despite differences in training loss. Furthermore, tuning just the learning rate is in most cases as good as tuning all the hyperparameters. Hence, we recommend picking any of the best-behaved adaptive optimizers (e.g., Adam) and tuning only its learning rate. When no hyperparameter can be tuned, SGD with Momentum is the best choice.
Abstract:Prompting Large Language Models (LLMs) performs impressively in zero- and few-shot settings. Hence, small and medium-sized enterprises (SMEs) that cannot afford the cost of creating large task-specific training datasets, but also the cost of pretraining their own LLMs, are increasingly turning to third-party services that allow them to prompt LLMs. However, such services currently require a payment per call, which becomes a significant operating expense (OpEx). Furthermore, customer inputs are often very similar over time, hence SMEs end-up prompting LLMs with very similar instances. We propose a framework that allows reducing the calls to LLMs by caching previous LLM responses and using them to train a local inexpensive model on the SME side. The framework includes criteria for deciding when to trust the local model or call the LLM, and a methodology to tune the criteria and measure the tradeoff between performance and cost. For experimental purposes, we instantiate our framework with two LLMs, GPT-3.5 or GPT-4, and two inexpensive students, a k-NN classifier or a Multi-Layer Perceptron, using two common business tasks, intent recognition and sentiment analysis. Experimental results indicate that significant OpEx savings can be obtained with only slightly lower performance.
Abstract:Pre-trained Transformers currently dominate most NLP tasks. They impose, however, limits on the maximum input length (512 sub-words in BERT), which are too restrictive in the legal domain. Even sparse-attention models, such as Longformer and BigBird, which increase the maximum input length to 4,096 sub-words, severely truncate texts in three of the six datasets of LexGLUE. Simpler linear classifiers with TF-IDF features can handle texts of any length, require far less resources to train and deploy, but are usually outperformed by pre-trained Transformers. We explore two directions to cope with long legal texts: (i) modifying a Longformer warm-started from LegalBERT to handle even longer texts (up to 8,192 sub-words), and (ii) modifying LegalBERT to use TF-IDF representations. The first approach is the best in terms of performance, surpassing a hierarchical version of LegalBERT, which was the previous state of the art in LexGLUE. The second approach leads to computationally more efficient models at the expense of lower performance, but the resulting models still outperform overall a linear SVM with TF-IDF features in long legal document classification.
Abstract:We consider zero-shot cross-lingual transfer in legal topic classification using the recent MultiEURLEX dataset. Since the original dataset contains parallel documents, which is unrealistic for zero-shot cross-lingual transfer, we develop a new version of the dataset without parallel documents. We use it to show that translation-based methods vastly outperform cross-lingual fine-tuning of multilingually pre-trained models, the best previous zero-shot transfer method for MultiEURLEX. We also develop a bilingual teacher-student zero-shot transfer approach, which exploits additional unlabeled documents of the target language and performs better than a model fine-tuned directly on labeled target language documents.
Abstract:We study the effect of seven data augmentation (da) methods in factoid question answering, focusing on the biomedical domain, where obtaining training instances is particularly difficult. We experiment with data from the BioASQ challenge, which we augment with training instances obtained from an artificial biomedical machine reading comprehension dataset, or via back-translation, information retrieval, word substitution based on word2vec embeddings, or masked language modeling, question generation, or extending the given passage with additional context. We show that da can lead to very significant performance gains, even when using large pre-trained Transformers, contributing to a broader discussion of if/when da benefits large pre-trained models. One of the simplest da methods, word2vec-based word substitution, performed best and is recommended. We release our artificial training instances and code.
Abstract:Publicly traded companies are required to submit periodic reports with eXtensive Business Reporting Language (XBRL) word-level tags. Manually tagging the reports is tedious and costly. We, therefore, introduce XBRL tagging as a new entity extraction task for the financial domain and release FiNER-139, a dataset of 1.1M sentences with gold XBRL tags. Unlike typical entity extraction datasets, FiNER-139 uses a much larger label set of 139 entity types. Most annotated tokens are numeric, with the correct tag per token depending mostly on context, rather than the token itself. We show that subword fragmentation of numeric expressions harms BERT's performance, allowing word-level BILSTMs to perform better. To improve BERT's performance, we propose two simple and effective solutions that replace numeric expressions with pseudo-tokens reflecting original token shapes and numeric magnitudes. We also experiment with FIN-BERT, an existing BERT model for the financial domain, and release our own BERT (SEC-BERT), pre-trained on financial filings, which performs best. Through data and error analysis, we finally identify possible limitations to inspire future work on XBRL tagging.