Abstract:This paper presents the systems we developed for RIRAG-2025, a shared task that requires answering regulatory questions by retrieving relevant passages. The generated answers are evaluated using RePASs, a reference-free and model-based metric. Our systems use a combination of three retrieval models and a reranker. We show that by exploiting a neural component of RePASs that extracts important sentences ('obligations') from the retrieved passages, we achieve a dubiously high score (0.947), even though the answers are directly extracted from the retrieved passages and are not actually generated answers. We then show that by selecting the answer with the best RePASs among a few generated alternatives and then iteratively refining this answer by reducing contradictions and covering more obligations, we can generate readable, coherent answers that achieve a more plausible and relatively high score (0.639).
Abstract:We present Legal Argument Reasoning (LAR), a novel task designed to evaluate the legal reasoning capabilities of Large Language Models (LLMs). The task requires selecting the correct next statement (from multiple choice options) in a chain of legal arguments from court proceedings, given the facts of the case. We constructed a dataset (LAR-ECHR) for this task using cases from the European Court of Human Rights (ECHR). We evaluated seven general-purpose LLMs on LAR-ECHR and found that (a) the ranking of the models is aligned with that of LegalBench, an established US-based legal reasoning benchmark, even though LAR-ECHR is based on EU law, (b) LAR-ECHR distinguishes top models more clearly, compared to LegalBench, (c) even the best model (GPT-4o) obtains 75.8% accuracy on LAR-ECHR, indicating significant potential for further model improvement. The process followed to construct LAR-ECHR can be replicated with cases from other legal systems.
Abstract:The SemEval task on Argument Reasoning in Civil Procedure is challenging in that it requires understanding legal concepts and inferring complex arguments. Currently, most Large Language Models (LLM) excelling in the legal realm are principally purposed for classification tasks, hence their reasoning rationale is subject to contention. The approach we advocate involves using a powerful teacher-LLM (ChatGPT) to extend the training dataset with explanations and generate synthetic data. The resulting data are then leveraged to fine-tune a small student-LLM. Contrary to previous work, our explanations are not directly derived from the teacher's internal knowledge. Instead they are grounded in authentic human analyses, therefore delivering a superior reasoning signal. Additionally, a new `mutation' method generates artificial data instances inspired from existing ones. We are publicly releasing the explanations as an extension to the original dataset, along with the synthetic dataset and the prompts that were used to generate both. Our system ranked 15th in the SemEval competition. It outperforms its own teacher and can produce explanations aligned with the original human analyses, as verified by legal experts.
Abstract:Multimodal learning pipelines have benefited from the success of pretrained language models. However, this comes at the cost of increased model parameters. In this work, we propose Adapted Multimodal BERT (AMB), a BERT-based architecture for multimodal tasks that uses a combination of adapter modules and intermediate fusion layers. The adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations. During the adaptation process the pre-trained language model parameters remain frozen, allowing for fast, parameter-efficient training. In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise. Our experiments on sentiment analysis with CMU-MOSEI show that AMB outperforms the current state-of-the-art across metrics, with 3.4% relative reduction in the resulting error and 2.1% relative improvement in 7-class classification accuracy.